scholarly journals In vitro susceptibilities of clinical yeast isolates to a new echinocandin derivative, LY303366, and other antifungal agents.

1997 ◽  
Vol 41 (4) ◽  
pp. 763-766 ◽  
Author(s):  
M A Pfaller ◽  
S A Messer ◽  
S Coffman

LY303366 is a new semisynthetic echinocandin derivative with potent, broad-spectrum fungicidal activity. We investigated the in vitro activity of LY303366, amphotericin B, flucytosine (5FC), fluconazole, and itraconazole against 435 clinical yeast isolates (413 Candida and 22 Saccharomyces cerevisiae isolates) obtained from over 30 different medical centers. MICs for all five antifungal agents were determined by the National Committee for Clinical Laboratory Standards method with RPMI 1640 test medium. LY303366 was also tested in antibiotic medium 3 as specified by the manufacturer. Overall, LY303366 was quite active against all of the yeast isolates when tested in RPMI 1640 (MIC at which 90% of the isolates are inhibited [MIC90], 1.0 microg/ml) but appeared to be considerably more potent when tested in antibiotic medium 3 (MIC90, 0.03 microg/ml). When tested in antibiotic medium 3, LY303366 was 16- to >2,000-fold more active than itraconazole, fluconazole, amphotericin B, or 5FC against all species except Candida parapsilosis. When tested in RPMI 1640, LY303366 was comparable to amphotericin B and itraconazole and more active than fluconazole and 5FC. All of the isolates for which fluconazole and itraconazole had elevated MICs (> or = 128 and > or = 2.0 microg/ml, respectively) were inhibited by < or = 0.007 microg of LY303366/ml when tested in antibiotic medium 3 and < or = 0.5 microg/ml when tested in RPMI 1640. Based on these studies, LY303366 has promising antifungal activity and warrants further in vitro and in vivo investigation.

1998 ◽  
Vol 42 (1) ◽  
pp. 161-163 ◽  
Author(s):  
F. Marco ◽  
M. A. Pfaller ◽  
S. Messer ◽  
R. N. Jones

ABSTRACT Voriconazole (formerly UK-109,496) is a new monotriazole antifungal agent which has potent activity against Candida,Cryptococcus, and Aspergillus species. We investigated the in vitro activity of voriconazole compared to those of fluconazole, itraconazole, amphotericin B, and flucytosine (5FC) against 394 bloodstream isolates of Candida (five species) obtained from more than 30 different medical centers. MICs of all antifungal drugs were determined by the method recommended by the National Committee for Clinical Laboratory Standards using RPMI 1640 test medium. Overall, voriconazole was quite active against all the yeast isolates (MIC at which 90% of the isolates are inhibited [MIC90], ≤0.5 μg/ml). Candida albicans was the most susceptible species (MIC90, 0.06 μg/ml) andCandida glabrata and Candida krusei were the least (MIC90, 1 μg/ml). Voriconazole was more active than amphotericin B and 5FC against all species except C. glabrata and was also more active than itraconazole and fluconazole. For isolates of Candida spp. with decreased susceptibility to fluconazole and itraconazole MICs of voriconazole were also higher. Based on these results, voriconazole has promising antifungal activity and further in vitro and in vivo investigations are warranted.


2000 ◽  
Vol 44 (9) ◽  
pp. 2435-2441 ◽  
Author(s):  
Francesco Barchiesi ◽  
Anna M. Schimizzi ◽  
Francesca Caselli ◽  
Andrea Novelli ◽  
Stefania Fallani ◽  
...  

ABSTRACT The interaction of amphotericin B (AmB) and azole antifungal agents in the treatment of fungal infections is still a controversial issue. A checkerboard titration broth microdilution-based method that adhered to the recommendations of the National Committee for Clinical Laboratory Standards was applied to study the in vitro interactions of AmB with fluconazole (FLC), itraconazole (ITC), and the new investigational triazole SCH 56592 (SCH) against 15 clinical isolates ofCryptococcus neoformans. Synergy, defined as a fractional inhibitory concentration (FIC) index of ≤0.50, was observed for 7% of the isolates in studies of the interactions of both FLC-AmB and ITC-AmB and for 33% of the isolates in studies of the SCH-AmB interactions; additivism (FICs, >0.50 to 1.0) was observed for 67, 73, and 53% of the isolates in studies of the FLC-AmB, ITC-AmB, and SCH-AmB interactions, respectively; indifference (FICs, >1.0 to ≤2.0) was observed for 26, 20, and 14% of the isolates in studies of the FLC-AmB, ITC-AmB, and SCH-AmB interactions, respectively. Antagonism (FIC >2.0) was not observed. When synergy was not achieved, there was still a decrease, although not as dramatic, in the MIC of one or both drugs when they were used in combination. To investigate the effects of FLC-AmB combination therapy in vivo, we established an experimental model of systemic cryptococcosis in BALB/c mice by intravenous injection of cells of C. neoformans 2337, a clinical isolate belonging to serotype D against which the combination of FLC and AmB yielded an additive interaction in vitro. Both survival and tissue burden studies showed that combination therapy was more effective than FLC alone and that combination therapy was at least as effective as AmB given as a single drug. On the other hand, when cells of C. neoformans 2337 were grown in FLC-containing medium, a pronounced increase in resistance to subsequent exposures to AmB was observed. In particular, killing experiments conducted with nonreplicating cells showed that preexposure to FLC abolished the fungicidal activity of the polyene. However, this apparent antagonism was not observed in vivo. Rather, when the two drugs were used sequentially for the treatment of systemic murine cryptococcosis, a reciprocal potentiation was often observed. Our study shows that (i) the combination of triazoles and AmB is significantly more active than either drug alone against C. neoformans in vitro and (ii) the concomitant or sequential use of FLC and AmB for the treatment of systemic murine cryptococcosis results in a positive interaction.


1999 ◽  
Vol 37 (3) ◽  
pp. 870-872 ◽  
Author(s):  
M. A. Pfaller ◽  
S. A. Messer ◽  
S. Gee ◽  
S. Joly ◽  
C. Pujol ◽  
...  

Candida dubliniensis is a newly recognized fungal pathogen causing mucosal disease in AIDS patients. Although preliminary studies indicate that most strains of C. dubliniensis are susceptible to established antifungal agents, fluconazole-resistant strains have been detected. Furthermore, fluconazole-resistant strains are easily derived in vitro, and these strains exhibit increased expression of multidrug resistance transporters, especially MDR1. Because of the potential for the development of resistant strains of C. dubliniensis, it is prudent to explore the in vitro activities of several of the newer triazole and echinocandin antifungals against isolates of C. dubliniensis. In this study we tested 71 isolates of C. dubliniensis against the triazoles BMS-207147, Sch 56592, and voriconazole and a representative of the echinocandin class of antifungal agents, MK-0991. We compared the activities of these agents with those of the established antifungal agents fluconazole, itraconazole, amphotericin B, and 5-fluorocytosine (5FC) by using National Committee for Clinical Laboratory Standards microdilution reference methods. Our findings indicate that the vast majority of clinical isolates of C. dubliniensis are highly susceptible to both new and established antifungal agents. Strains with decreased susceptibilities to fluconazole remained susceptible to the investigational agents as well as to amphotericin B and 5FC. The increased potencies of the new triazole and echinocandin antifungal agents may provide effective therapeutic options for the treatment of infections due to C. dubliniensis.


2001 ◽  
Vol 45 (11) ◽  
pp. 3065-3069 ◽  
Author(s):  
Mary E. Brandt ◽  
Michael A. Pfaller ◽  
Rana A. Hajjeh ◽  
Richard J. Hamill ◽  
Peter G. Pappas ◽  
...  

ABSTRACT The antifungal drug susceptibilities of two collections ofCryptococcus neoformans isolates obtained through active laboratory-based surveillance from 1992 to 1994 (368 isolates) and 1996 to 1998 (364 isolates) were determined. The MICs of fluconazole, itraconazole, and flucytosine were determined by the National Committee for Clinical Laboratory Standards broth microdilution method; amphotericin B MICs were determined by the E-test. Our results showed that the MIC ranges, the MICs at which 50% of isolates are inhibited (MIC50s), and the MIC90s of these four antifungal agents did not change from 1992 to 1998. In addition, very small numbers of isolates showed elevated MICs suggestive of in vitro resistance. The MICs of amphotericin B were elevated (≥2 μg/ml) for 2 isolates, and the MICs of flucytosine were elevated (≥32 μg/ml) for 14 isolates. Among the azoles, the fluconazole MIC was elevated (≥64 μg/ml) for 8 isolates and the itraconazole MIC (≥1 μg/ml) was elevated for 45 isolates. Analysis of 172 serial isolates from 71 patients showed little change in the fluconazole MIC over time. For isolates from 58 patients (82% of serial cases) there was either no change or a twofold change in the fluconazole MIC. In contrast, for isolates from seven patients (12% of serial cases) the increase in the MIC was at least fourfold. For isolates from another patient there was a 32-fold decrease in the fluconazole MIC over a 1-month period. We conclude that in vitro resistance to antifungal agents remains uncommon in C. neoformans and has not significantly changed with time during the past decade.


1999 ◽  
Vol 43 (5) ◽  
pp. 1260-1263 ◽  
Author(s):  
Elizabeth M. Johnson ◽  
Adrien Szekely ◽  
David W. Warnock

ABSTRACT The in vitro activity of Syn-2869 was compared with that of amphotericin B and itraconazole. MICs for 100 isolates of pathogenic molds belonging to 12 species were determined by a broth microdilution adaptation of the method recommended by the National Committee for Clinical Laboratory Standards. Syn-2869 and itraconazole showed comparable, good activity against the dematiaceous moldsCladophialophora bantiana, Cladophialophora carrionii, Exophiala dermatitidis, Fonsecaea pedrosoi, Phialophora parasitica, andRamichloridium mackenziei. Neither of the azole agents was active against the hyaline molds Fusarium solani,Scedosporium prolificans, and Scopulariopsis brevicaulis, but both were more active than amphotericin B against Scedosporium apiospermum. The MICs of the three agents were comparable for the mucoraceous moldAbsidia corymbifera, but Syn-2869 appeared to be the least active against the dimorphic mold Sporothrix schenckii. Our results suggest that Syn-2869 could be effective against a range of mold infections in humans.


2002 ◽  
Vol 46 (11) ◽  
pp. 3394-3400 ◽  
Author(s):  
David van Duin ◽  
Arturo Casadevall ◽  
Joshua D. Nosanchuk

ABSTRACT The fungal pathogens Cryptococcus neoformans and Histoplasma capsulatum produce melanin-like pigments in the presence of l-dopa in vitro and during mammalian infection. We investigated whether melanization affected the susceptibilities of the fungi to amphotericin B, caspofungin, fluconazole, itraconazole, or flucytosine (5FC). Using the standard macrodilution MIC protocol (the M27A protocol) of the National Committee for Clinical Laboratory Standards for yeast, we found no difference in the susceptibilities of melanized and nonmelanized C. neoformans and H. capsulatum isolates. Killing assays demonstrated that melanization reduced the susceptibilities of both fungi to amphotericin B and caspofungin. Laccase-deficient C. neoformans cells grown with l-dopa were significantly more susceptible than congenic melanin-producing yeast to killing by amphotericin B or caspofungin. Preincubation of amphotericin B or caspofungin with melanins decreased their antifungal activities. Elemental analysis of melanins incubated with amphotericin B or caspofungin revealed an alteration in the C:N ratios of the melanins, which indicated binding of these drugs by the melanins. In contrast, incubation of fluconazole, itraconazole, or 5FC with melanins did not significantly affect the antifungal efficacies of the drugs or the chemical composition of the melanins. The results suggest a potential explanation for the inefficacy of caspofungin against C. neoformans in vivo, despite activity in vitro. Furthermore, the results indicate that fungal melanins protect C. neoformans and H. capsulatum from the activities of amphotericin B and caspofungin and that this protection is not demonstrable by standard broth macrodilution assays.


2000 ◽  
Vol 44 (5) ◽  
pp. 1242-1246 ◽  
Author(s):  
Angela M. Nilius ◽  
Patti M. Raney ◽  
Dena M. Hensey-Rudloff ◽  
Weibo Wang ◽  
Qun Li ◽  
...  

ABSTRACT A-192411.29 is a novel antifungal agent derived from the structural template of the natural product echinocandin. The in vitro activity of A-192411.29 against common pathogenic yeasts was assessed by National Committee for Clinical Laboratory Standards method M27-A. It demonstrated broad-spectrum, fungicidal activity and was active against the most clinically relevant yeasts, such as Candida albicans, Candida tropicalis, and Candida glabrata, as well as less commonly encounteredCandida species; in general, its potency on a weight basis was comparable to that of amphotericin B. It maintained potent in vitro activity against Candida strains with reduced susceptibilities to fluconazole and amphotericin B. The in vitro activity of A-192411.29 against Cryptococcus neoformans was comparable to its activity against Candida spp. However, A-192411.29 did not demonstrate complete growth inhibition ofAspergillus fumigatus by the broth microdilution method used. A-192411.29 possesses an antifungal profile comparable to or better than those of fluconazole and amphotericin B against pathogenic yeasts, including strains resistant to fluconazole or amphotericin B, suggesting that it may be a therapeutically useful new antifungal drug.


2003 ◽  
Vol 47 (11) ◽  
pp. 3592-3597 ◽  
Author(s):  
Wei Liu ◽  
Michail S. Lionakis ◽  
Russell E. Lewis ◽  
Nathan Wiederhold ◽  
Gregory S. May ◽  
...  

ABSTRACT Fluconazole (FLC), a triazole with limited activity against Aspergillus species, is frequently used as prophylaxis in leukemia patients and bone marrow transplant recipients. Prior FLC use has been associated with an increasing incidence of invasive aspergillosis in these patients. We hypothesized that prior exposure of Aspergillus fumigatus to FLC could result in altered in vitro susceptibility of this fungus to other, more active triazoles. Thus, we performed serial passages of conidia of 10 clinical isolates of A. fumigatus (all itraconazole [ITC] susceptible) on FLC-containing yeast agar glucose plates. The MICs and minimal fungicidal concentrations (MFCs) of amphotericin B, FLC, ITC, and voriconazole (VRC) for A. fumigatus conidia were measured following four passages on FLC-containing medium according to the National Committee for Clinical Laboratory Standards microdilution method. Serial passages on FLC-containing plates resulted in a fourfold increase in the MFCs (but not the MICs) of ITC for nine isolates. The attenuated ITC fungicidal activity against A. fumigatus following FLC preexposure was medium independent and was also observed against FLC-preexposed A. fumigatus hyphae with the viability staining FUN-1 dye. Moreover, FLC preexposure of A. fumigatus conidia resulted in an analogous increase in the MFCs (but not the MICs) of VRC. Our findings suggest that preexposure of A. fumigatus to FLC attenuates the in vitro fungicidal activity of subsequent ITC use against it. This phenotypic adaptation is not captured by a routine MIC determination but requires MFC measurement. The in vivo significance of this in vitro phenomenon requires further investigation.


2010 ◽  
Vol 54 (8) ◽  
pp. 3233-3240 ◽  
Author(s):  
Sharon C.-A. Chen ◽  
Chayanika Biswas ◽  
Robyn Bartley ◽  
Fred Widmer ◽  
Namfon Pantarat ◽  
...  

ABSTRACT Ten bis(alkylpyridinium)alkane compounds were tested for antifungal activity against 19 species (26 isolates) of yeasts and molds. We then determined the MICs and minimum fungicidal concentrations (MFCs) of four of the most active compounds (compounds 1, 4, 5, and 8) against 80 Candida and 20 cryptococcal isolates, in comparison with the MICs of amphotericin B, fluconazole, itraconazole, voriconazole, posaconazole, and caspofungin, using Clinical Laboratory and Standards Institutes broth microdulition M27-A3 (yeasts) or M38-A2 (filamentous fungi) susceptibility protocols. The compounds were more potent against Candida and Cryptococcus spp. (MIC range, 0.74 to 27.9 μg/ml) than molds (0.74 to 59.7 μg/ml). MICs against Exophiala were 0.37 to 5.9 μg/ml and as low as 1.48 μg/ml for Scedosporium but ≥25 μg/ml for zygomycetes, Aspergillus, and Fusarium spp. Compounds 1, 4, 5, and 8 exhibited good fungicidal activity against Candida and Cryptococcus, except for Candida parapsilosis (MICs of >44 μg/ml). Geometric mean (GM) MICs were similar to those of amphotericin B and lower than or comparable to fluconazole GM MICs but 10- to 100-fold greater than those for the other azoles. GM MICs against Candida glabrata were <1 μg/ml, significantly lower than fluconazole GM MICs (P < 0.001) and similar to those of itraconazole, posaconazole, and voriconazole (GM MIC range of 0.4 to 1.23 μg/ml). The GM MIC of compound 4 against Candida guilliermondii was lower than that of fluconazole (1.69 μg/ml versus 7.48 μg/ml; P = 0.012). MICs against Cryptococcus neoformans and Cryptococcus gattii were similar to those of fluconazole. The GM MIC of compound 4 was significantly higher for C. neoformans (3.83 μg/ml versus 1.81 μg/ml for C. gattii; P = 0.015). This study has identified clinically relevant in vitro antifungal activities of novel bisalkypyridinium alkane compounds.


1999 ◽  
Vol 37 (12) ◽  
pp. 3946-3951 ◽  
Author(s):  
Sevtap Arikan ◽  
Mario Lozano-Chiu ◽  
Victor Paetznick ◽  
Sunaina Nangia ◽  
John H. Rex

We compared the activities of amphotericin B, itraconazole, and voriconazole against clinical Aspergillus(n = 82) and Fusarium (n= 22) isolates by a microdilution method adopted from the National Committee for Clinical Laboratory Standards (NCCLS-M27A). RPMI 1640 (RPMI), RPMI 1640 supplemented to 2% glucose (RPMI-2), and antibiotic medium 3 supplemented to 2% glucose (AM3) were used as test media. MICs were determined after 24, 48, and 72 h. A narrow range of amphotericin B MICs was observed for Aspergillus isolates, with minor variations among species. MICs for Fusariumisolates were higher than those for Aspergillus isolates. MICs of itraconazole were prominently high for two previously defined itraconazole-resistant Aspergillus fumigatus isolates andFusarium solani. Voriconazole showed good in vitro activity against itraconazole-resistant isolates, but the MICs of voriconazole for F. solani were high. RPMI was the most efficient medium for detection of itraconazole-resistant isolates, followed by RPMI-2. While the significance remains unclear, AM3 lowered the MICs, particularly those of amphotericin B.


Sign in / Sign up

Export Citation Format

Share Document