scholarly journals In Vitro Activity of Syn-2869, a Novel Triazole Agent, against Emerging and Less Common Mold Pathogens

1999 ◽  
Vol 43 (5) ◽  
pp. 1260-1263 ◽  
Author(s):  
Elizabeth M. Johnson ◽  
Adrien Szekely ◽  
David W. Warnock

ABSTRACT The in vitro activity of Syn-2869 was compared with that of amphotericin B and itraconazole. MICs for 100 isolates of pathogenic molds belonging to 12 species were determined by a broth microdilution adaptation of the method recommended by the National Committee for Clinical Laboratory Standards. Syn-2869 and itraconazole showed comparable, good activity against the dematiaceous moldsCladophialophora bantiana, Cladophialophora carrionii, Exophiala dermatitidis, Fonsecaea pedrosoi, Phialophora parasitica, andRamichloridium mackenziei. Neither of the azole agents was active against the hyaline molds Fusarium solani,Scedosporium prolificans, and Scopulariopsis brevicaulis, but both were more active than amphotericin B against Scedosporium apiospermum. The MICs of the three agents were comparable for the mucoraceous moldAbsidia corymbifera, but Syn-2869 appeared to be the least active against the dimorphic mold Sporothrix schenckii. Our results suggest that Syn-2869 could be effective against a range of mold infections in humans.

2000 ◽  
Vol 44 (5) ◽  
pp. 1242-1246 ◽  
Author(s):  
Angela M. Nilius ◽  
Patti M. Raney ◽  
Dena M. Hensey-Rudloff ◽  
Weibo Wang ◽  
Qun Li ◽  
...  

ABSTRACT A-192411.29 is a novel antifungal agent derived from the structural template of the natural product echinocandin. The in vitro activity of A-192411.29 against common pathogenic yeasts was assessed by National Committee for Clinical Laboratory Standards method M27-A. It demonstrated broad-spectrum, fungicidal activity and was active against the most clinically relevant yeasts, such as Candida albicans, Candida tropicalis, and Candida glabrata, as well as less commonly encounteredCandida species; in general, its potency on a weight basis was comparable to that of amphotericin B. It maintained potent in vitro activity against Candida strains with reduced susceptibilities to fluconazole and amphotericin B. The in vitro activity of A-192411.29 against Cryptococcus neoformans was comparable to its activity against Candida spp. However, A-192411.29 did not demonstrate complete growth inhibition ofAspergillus fumigatus by the broth microdilution method used. A-192411.29 possesses an antifungal profile comparable to or better than those of fluconazole and amphotericin B against pathogenic yeasts, including strains resistant to fluconazole or amphotericin B, suggesting that it may be a therapeutically useful new antifungal drug.


1998 ◽  
Vol 36 (1) ◽  
pp. 198-202 ◽  
Author(s):  
Ana Espinel-Ingroff

The in vitro antifungal activity of a new triazole derivative, voriconazole, was compared with those of itraconazole and amphotericin B against 67 isolates of Aspergillus flavus,Aspergillus fumigatus, Bipolaris spp.,Fusarium oxysporum, Fusarium solani,Pseudallescheria boydii, Rhizopus arrhizus,Blastomyces dermatitidis, Histoplasma capsulatum, and Sporothrix schenckii. The in vitro activities of voriconazole were also compared with those of amphotericin B, fluconazole, and itraconazole against 189 isolates of emerging and common yeast pathogens of Blastoschizomyces capitatus, Candida (13 species), Cryptococcus neoformans, Hansenula anomala, Rhodotorula rubra, Saccharomyces cerevisiae, Sporobolomyces salmonicolor, and Trichosporon beigelii. MICs were determined according to a procedure under evaluation by the National Committee for Clinical Laboratory Standards (NCCLS) for broth microdilution testing of filamentous fungi and by the NCCLS M27-A broth microdilution method for yeasts. The in vitro activities of voriconazole were similar to or better than those of itraconazole and amphotericin B against Aspergillus spp.,Fusarium spp., and P. boydii as well as againstB. dermatitidis and H. capsulatum. The activities of voriconazole were also comparable to or better than those of amphotericin B, fluconazole, and itraconazole against most species of yeasts tested. Exceptions were certain isolates of R. rubra and S. salmonicolor. These results suggest that voriconazole has a wide spectrum of activity in vitro; its effectiveness in the treatment of human mycoses is under evaluation in clinical trials.


1999 ◽  
Vol 37 (12) ◽  
pp. 3946-3951 ◽  
Author(s):  
Sevtap Arikan ◽  
Mario Lozano-Chiu ◽  
Victor Paetznick ◽  
Sunaina Nangia ◽  
John H. Rex

We compared the activities of amphotericin B, itraconazole, and voriconazole against clinical Aspergillus(n = 82) and Fusarium (n= 22) isolates by a microdilution method adopted from the National Committee for Clinical Laboratory Standards (NCCLS-M27A). RPMI 1640 (RPMI), RPMI 1640 supplemented to 2% glucose (RPMI-2), and antibiotic medium 3 supplemented to 2% glucose (AM3) were used as test media. MICs were determined after 24, 48, and 72 h. A narrow range of amphotericin B MICs was observed for Aspergillus isolates, with minor variations among species. MICs for Fusariumisolates were higher than those for Aspergillus isolates. MICs of itraconazole were prominently high for two previously defined itraconazole-resistant Aspergillus fumigatus isolates andFusarium solani. Voriconazole showed good in vitro activity against itraconazole-resistant isolates, but the MICs of voriconazole for F. solani were high. RPMI was the most efficient medium for detection of itraconazole-resistant isolates, followed by RPMI-2. While the significance remains unclear, AM3 lowered the MICs, particularly those of amphotericin B.


1998 ◽  
Vol 42 (1) ◽  
pp. 161-163 ◽  
Author(s):  
F. Marco ◽  
M. A. Pfaller ◽  
S. Messer ◽  
R. N. Jones

ABSTRACT Voriconazole (formerly UK-109,496) is a new monotriazole antifungal agent which has potent activity against Candida,Cryptococcus, and Aspergillus species. We investigated the in vitro activity of voriconazole compared to those of fluconazole, itraconazole, amphotericin B, and flucytosine (5FC) against 394 bloodstream isolates of Candida (five species) obtained from more than 30 different medical centers. MICs of all antifungal drugs were determined by the method recommended by the National Committee for Clinical Laboratory Standards using RPMI 1640 test medium. Overall, voriconazole was quite active against all the yeast isolates (MIC at which 90% of the isolates are inhibited [MIC90], ≤0.5 μg/ml). Candida albicans was the most susceptible species (MIC90, 0.06 μg/ml) andCandida glabrata and Candida krusei were the least (MIC90, 1 μg/ml). Voriconazole was more active than amphotericin B and 5FC against all species except C. glabrata and was also more active than itraconazole and fluconazole. For isolates of Candida spp. with decreased susceptibility to fluconazole and itraconazole MICs of voriconazole were also higher. Based on these results, voriconazole has promising antifungal activity and further in vitro and in vivo investigations are warranted.


1997 ◽  
Vol 41 (4) ◽  
pp. 763-766 ◽  
Author(s):  
M A Pfaller ◽  
S A Messer ◽  
S Coffman

LY303366 is a new semisynthetic echinocandin derivative with potent, broad-spectrum fungicidal activity. We investigated the in vitro activity of LY303366, amphotericin B, flucytosine (5FC), fluconazole, and itraconazole against 435 clinical yeast isolates (413 Candida and 22 Saccharomyces cerevisiae isolates) obtained from over 30 different medical centers. MICs for all five antifungal agents were determined by the National Committee for Clinical Laboratory Standards method with RPMI 1640 test medium. LY303366 was also tested in antibiotic medium 3 as specified by the manufacturer. Overall, LY303366 was quite active against all of the yeast isolates when tested in RPMI 1640 (MIC at which 90% of the isolates are inhibited [MIC90], 1.0 microg/ml) but appeared to be considerably more potent when tested in antibiotic medium 3 (MIC90, 0.03 microg/ml). When tested in antibiotic medium 3, LY303366 was 16- to >2,000-fold more active than itraconazole, fluconazole, amphotericin B, or 5FC against all species except Candida parapsilosis. When tested in RPMI 1640, LY303366 was comparable to amphotericin B and itraconazole and more active than fluconazole and 5FC. All of the isolates for which fluconazole and itraconazole had elevated MICs (> or = 128 and > or = 2.0 microg/ml, respectively) were inhibited by < or = 0.007 microg of LY303366/ml when tested in antibiotic medium 3 and < or = 0.5 microg/ml when tested in RPMI 1640. Based on these studies, LY303366 has promising antifungal activity and warrants further in vitro and in vivo investigation.


1998 ◽  
Vol 42 (6) ◽  
pp. 1412-1416 ◽  
Author(s):  
Elizabeth M. Johnson ◽  
Joshua O. Ojwang ◽  
Adrien Szekely ◽  
Thomas L. Wallace ◽  
David W. Warnock

ABSTRACT The in vitro activity of a multilamellar liposomal formulation of nystatin (Nyotran) was compared with those of free nystatin and four pharmaceutical preparations of amphotericin B. MICs for 200 isolates of two Aspergillus spp., seven Candidaspp., and Cryptococcus neoformans were determined by a broth microdilution adaptation of the method recommended by the National Committee for Clinical Laboratory Standards. Minimum lethal concentrations (MLCs) of the six antifungal preparations were also determined. Both nystatin formulations possessed fungistatic and fungicidal activities against the 10 species tested. Liposomal nystatin appeared to be as active as free nystatin, with MICs and MLCs that were similar to, or lower than, those of the latter. Neither formulation of nystatin was as active as amphotericin B deoxycholate (Fungizone) or amphotericin B lipid complex (Abelcet), but both were more effective than liposomal amphotericin B (AmBisome). Our results suggest that further evaluation of liposomal nystatin is justified.


1998 ◽  
Vol 42 (4) ◽  
pp. 984-986 ◽  
Author(s):  
Hannah M. Wexler ◽  
Eric Molitoris ◽  
Denise Molitoris ◽  
Sydney M. Finegold

ABSTRACT The in vitro activity of levofloxacin was compared to the activities of ofloxacin, ciprofloxacin, ampicillin-sulbactam (2:1), cefoxitin, and metronidazole for a selected group of anaerobes (n = 175) isolated from skin and soft tissue infections by using the National Committee for Clinical Laboratory Standards-approved Wadsworth method. Ampicillin-sulbactam and cefoxitin inhibited 99% of the strains of this select group, levofloxacin and ofloxacin inhibited 73 and 50%, respectively, at 2 μg/ml, and ciprofloxacin inhibited 51% at 1 μg/ml. The geometric mean MIC of levofloxacin was lower than those of ofloxacin and ciprofloxacin for every group except Veillonella.


2002 ◽  
Vol 46 (11) ◽  
pp. 3518-3521 ◽  
Author(s):  
M. A. Pfaller ◽  
S. A. Messer ◽  
L. Boyken ◽  
H. Huynh ◽  
R. J. Hollis ◽  
...  

ABSTRACT We determined the in vitro activity of flucytosine (5-fluorocytosine [5FC]) against 8,803 clinical isolates of Candida spp. (18 species) obtained from more than 200 medical centers worldwide between 1992 and 2001. The MICs were determined by broth microdilution tests performed according to NCCLS guidelines by using RPMI 1640 as the test medium and the following interpretive breakpoints: susceptible (S), ≤4 μg/ml; intermediate (I), 8 to 16 μg/ml; resistant (R), ≥32 μg/ml. 5FC was very active against the 8,803 Candida isolates (MIC90, 1 μg/ml), 95% S. A total of 99 to 100% of C. glabrata (MIC90, 0.12 μg/ml), C. parapsilosis (MIC90, 0.25 μg/ml), C. dubliniensis (MIC90, 0.12 μg/ml), C. guilliermondii (MIC90, 0.5 μg/ml), and C. kefyr (MIC90, 1 μg/ml) were susceptible to 5FC at the NCCLS breakpoint. C. albicans (MIC90, 1 μg/ml; 97% S) and C. tropicalis (MIC90, 1 μg/ml; 92% S) were only slightly less susceptible. In contrast, C. krusei was the least susceptible species: 5% S; MIC90, 32 μg/ml. Primary resistance to 5FC is very uncommon among Candida spp. (95% S, 2% I, and 3% R), with the exception of C. krusei (5% S, 67% I, and 28% R). The in vitro activity of 5FC, combined with previous data demonstrating a prolonged post-antifungal effect (2.5 to 4 h) and concentration-independent activity (optimized at 4× MIC), suggest that 5FC could be used in lower doses to reduce host toxicity while maintaining antifungal efficacy.


1999 ◽  
Vol 37 (5) ◽  
pp. 1480-1483 ◽  
Author(s):  
Adrien Szekely ◽  
Elizabeth M. Johnson ◽  
David W. Warnock

We compared the E test with a broth microdilution method, performed according to National Committee for Clinical Laboratory Standards document M27-A guidelines, for determining the in vitro susceptibilities of 90 isolates of pathogenic molds (10 Absidia corymbifera, 10 Aspergillus flavus, 10Aspergillus fumigatus, 10 Aspergillus niger, 10Aspergillus terreus, 10 Exophiala dermatitidis, 10 Fusarium solani, 10 Scedosporium apiospermum, 5 Scedosporium prolificans, and 5Scopulariopsis brevicaulis). Overall, there was 71% agreement between the results of the two methods for amphotericin B (E-test MICs within ±2 log2 dilutions of broth microdilution MICs) and 88% agreement with the results for itraconazole. The overall levels of agreement (within ±2 log2 dilutions) were ≥80% for 5 of the 10 species tested against amphotericin B and 8 of the 10 species tested against itraconazole. The best agreement between the results was seen withA. fumigatus and A. terreus (100% of results for both agents within ±2 log2 dilutions). The poorest agreement was seen with S. apiospermum, S. prolificans, and S. brevicaulis tested against amphotericin B (20% of results within ±2 log2 dilutions). In every instance, this low level of agreement was due to isolates for which the broth microdilution MICs were low but for which the E-test MICs were much higher. The E test appears to be a suitable alternative procedure for testing the susceptibility of Aspergillusspp. and some other molds to amphotericin B or itraconazole.


1999 ◽  
Vol 45 (10) ◽  
pp. 871-874 ◽  
Author(s):  
Eric Dannaoui ◽  
Florence Persat ◽  
Marie-France Monier ◽  
Elisabeth Borel ◽  
Marie-Antoinette Piens ◽  
...  

A comparative study of visual and spectrophotometric MIC endpoint determinations for antifungal susceptibility testing of Aspergillus species was performed. A broth microdilution method adapted from the National Committee for Clinical Laboratory Standards (NCCLS) was used for susceptibility testing of 180 clinical isolates of Aspergillus species against amphotericin B and itraconazole. MICs were determined visually and spectrophotometrically at 490 nm after 24, 48, and 72h of incubation, and MIC pairs were compared. The agreement between the two methods was 99% for amphotericin B and ranged from 95 to 98% for itraconazole. It is concluded that spectrophotometric MIC endpoint determination is a valuable alternative to the visual reference method for susceptibility testing of Aspergillus species.Key words: antifungal, susceptibility testing, Aspergillus, spectrophotometric reading.


Sign in / Sign up

Export Citation Format

Share Document