scholarly journals TMC114, a Novel Human Immunodeficiency Virus Type 1 Protease Inhibitor Active against Protease Inhibitor-Resistant Viruses, Including a Broad Range of Clinical Isolates

2005 ◽  
Vol 49 (6) ◽  
pp. 2314-2321 ◽  
Author(s):  
Sandra De Meyer ◽  
Hilde Azijn ◽  
Dominique Surleraux ◽  
Dirk Jochmans ◽  
Abdellah Tahri ◽  
...  

ABSTRACT The purpose of this study was to characterize the antiviral activity, cytotoxicity, and mechanism of action of TMC114, a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI). TMC114 exhibited potent anti-HIV activity with a 50% effective concentration (EC50) of 1 to 5 nM and a 90% effective concentration of 2.7 to 13 nM. TMC114 exhibited no cytotoxicity at concentrations up to 100 μM (selectivity index, >20,000). All viruses in a panel of 19 recombinant clinical isolates carrying multiple protease mutations and demonstrating resistance to an average of five other PIs, were susceptible to TMC114, defined as a fold change in EC50 of <4. TMC114 was also effective against the majority of 1,501 PI-resistant recombinant viruses derived from recent clinical samples, with EC50s of <10 nM for 75% of the samples. In sequential passage experiments using HIV-1 LAI, two mutations (R41T and K70E) were selected. One selected virus showed a 10-fold reduction in susceptibility to TMC114, but <10-fold reductions in susceptibility to the current PIs (atazanavir was not assessed), except saquinavir. However, when the selected mutations were introduced into a laboratory strain by site-directed mutagenesis, they had no effect on susceptibility to TMC114 or other PIs. There was no evidence of antagonism between TMC114 and any currently available PIs or reverse transcriptase inhibitors. Combinations with ritonavir, nelfinavir, and amprenavir showed some evidence of synergy. These results suggest that TMC114 is a potential candidate for the treatment of both naïve and PI-experienced patients with HIV.

2011 ◽  
Vol 55 (12) ◽  
pp. 5723-5731 ◽  
Author(s):  
Inge Dierynck ◽  
Herwig Van Marck ◽  
Marcia Van Ginderen ◽  
Tim H. M. Jonckers ◽  
Madhavi N. L. Nalam ◽  
...  

ABSTRACTTMC310911 is a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) structurally closely related to darunavir (DRV) but with improved virological characteristics. TMC310911 has potent activity against wild-type (WT) HIV-1 (median 50% effective concentration [EC50], 14 nM) and a wide spectrum of recombinant HIV-1 clinical isolates, including multiple-PI-resistant strains with decreased susceptibility to currently approved PIs (fold change [FC] in EC50, >10). For a panel of 2,011 recombinant clinical isolates with decreased susceptibility to at least one of the currently approved PIs, the FC in TMC310911 EC50was ≤4 for 82% of isolates and ≤10 for 96% of isolates. The FC in TMC310911 EC50was ≤4 and ≤10 for 72% and 94% of isolates with decreased susceptibility to DRV, respectively.In vitroresistance selection (IVRS) experiments with WT virus and TMC310911 selected for mutations R41G or R41E, but selection of resistant virus required a longer time than IVRS performed with WT virus and DRV. IVRS performed with r13025, a multiple-PI-resistant recombinant clinical isolate, and TMC310911 selected for mutations L10F, I47V, and L90M (FC in TMC310911 EC50= 16). IVRS performed with r13025 in the presence of DRV required less time and resulted in more PI resistance-associated mutations (V32I, I50V, G73S, L76V, and V82I; FC in DRV EC50= 258). The activity against a comprehensive panel of PI-resistant mutants and the limitedin vitroselection of resistant viruses under drug pressure suggest that TMC310911 represents a potential drug candidate for the management of HIV-1 infection for a broad range of patients, including those with multiple PI resistance.


1997 ◽  
Vol 41 (11) ◽  
pp. 2367-2373 ◽  
Author(s):  
K T Chong ◽  
P J Pagano

PNU-140690 (sulfonamide-containing 5,6-dihydro-4-hydroxy-2-pyrone) is a potent, nonpeptidic inhibitor of the human immunodeficiency virus type 1 (HIV-1) protease currently under clinical evaluation. PNU-140690 and ritonavir were studied in two-drug combinations against the replication of HIV-1 clinical isolates in peripheral blood mononuclear cells. A ritonavir-sensitive (301-1x) and -resistant (301-6x) isolate pair derived from an individual before and after monotherapy with ritonavir were used. These isolates showed no significant difference in sensitivity to PNU-140690, but isolate 301-6x was more than 50-fold less sensitive to ritonavir than isolate 301-1x. Mathematical analysis showed that the combination of various concentrations of PNU-140690 with ritonavir yielded additive to moderately synergistic antiviral effects against the ritonavir-sensitive isolate and stronger synergy against the ritonavir-resistant isolate. The mechanism of synergy was not investigated, but the results suggested that both the virological and the observed in vitro pharmacological effects may have contributed to the observed synergy. Importantly, no significant antagonism was observed with the drug combinations studied. These data suggest that PNU-140690 may be useful in combination regimens with a structurally unrelated protease inhibitor such as ritonavir.


2007 ◽  
Vol 51 (9) ◽  
pp. 3264-3272 ◽  
Author(s):  
Jörn Lötsch ◽  
Sebastian Harder ◽  
Martin Stürmer ◽  
Hans-Wilhelm Doerr ◽  
Gerd Geisslinger ◽  
...  

ABSTRACT The objective of this study was to identify parameters among saquinavir pharmacokinetics, patients' demographics or comedications, to be addressed for improved personalized therapy. The presence of human immunodeficiency virus type 1 (HIV-1) RNA at therapy week 48 (principal target parameter), CD4 cell count at week 48, infections and side effects during 48 weeks, indicators of liver toxicity and lipid abnormalities at week 48, and a 12-h saquinavir plasma concentration-versus-time profile were assessed in 56 patients receiving saquinavir-ritonavir (1,000 and 100 mg, respectively) twice daily (44 therapy-naïve and 12 antiretrovirally pretreated patients) for association with saquinavir plasma concentrations, demographics, baseline values of target parameters, and coadministered antiretrovirals. Antiretroviral failure was observed in 8 of the 56 patients in whom HIV-1 RNA was detectable at week 48. This therapeutic failure was not associated with individual saquinavir pharmacokinetics. More likely, therapeutic failure was related to incidences interfering with antiretroviral therapy, causing therapy interruptions or incompliance. Weak associations were, however, seen between high maximum saquinavir plasma concentrations and both CD4 counts of ≥200 cells μl−1 at week 48 (P = 0.014) and constitutional side effects during 48 weeks (P = 0.002). However, patients with high CD4 counts and constitutional side effects were not identical (P = 0.53). Saquinavir therapeutic drug monitoring in patients infected with protease inhibitor-susceptible HIV-1 taking saquinavir-ritonavir (1,000 and 100 mg, respectively) is not demanded for improving the antiretroviral effect. It may be contemplated in cases with constitutional side effects or low CD4 counts with weak immune responses.


2016 ◽  
Vol 71 (5-6) ◽  
pp. 105-109 ◽  
Author(s):  
Zhiping Che ◽  
Yuee Tian ◽  
Zhenjie Hu ◽  
Yingwu Chen ◽  
Shengming Liu ◽  
...  

Abstract Fifteen N-arylsulfonyl-3-propionylindoles (3a–o) were prepared and preliminarily evaluated as in vitro inhibitors of human immunodeficiency virus type-1 (HIV-1). Three compounds 3c, 3g and 3i exhibited potent anti-HIV-1 activity with effective concentration (EC50) values of 0.8, 4.0 and 1.2 μg/mL, and therapeutic index (TI) values of 11.7, 16.6 and 84.1, respectively. N-(m-Nitro)phenylsulfonyl-3-propionyl-6-methylindole (3i) exhibited the most promising and best activity against HIV-1 replication. The cytotoxicity of these compounds was assessed as well.


1997 ◽  
Vol 41 (5) ◽  
pp. 965-971 ◽  
Author(s):  
D Lamarre ◽  
G Croteau ◽  
E Wardrop ◽  
L Bourgon ◽  
D Thibeault ◽  
...  

Palinavir is a potent inhibitor of the human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) proteases. Replication of laboratory strains (HIV-1, HIV-2, and simian immunodeficiency virus) and HIV-1 clinical isolates is inhibited by palinavir with 50% effective concentrations ranging from 0.5 to 30 nM. The average cytotoxic concentration of palinavir (35 microM) in the various target cells indicates a favorable therapeutic index. Potent antiviral activity is retained with increased doses of virus and with clinical isolates resistant to zidovudine (AZT), didanosine (ddI), or nevirapine. Combinations of palinavir with either AZT, ddI, or nevirapine demonstrate synergy or additivity in the inhibition of HIV-1 replication. Palinavir retains anti-HIV-1 activity when administered postinfection until times subsequent to the reverse transcription step. In chronically infected CR-10 cells, palinavir blocks Gag precursor polyprotein processing completely, reducing greater than 99% of infectious particle production. The results indicate that the antiviral activity of palinavir is specific to inhibition of the viral protease and occurs at a late stage in the replicative cycle of HIV-1. On the basis of the potent in vitro activity, low-level cytotoxicity, and other data, palinavir was selected for in-depth preclinical evaluation.


1996 ◽  
Vol 29 (2-3) ◽  
pp. 269-277 ◽  
Author(s):  
Jim A. Turpin ◽  
Catherine A. Schaeffer ◽  
Ming Bu ◽  
Lisa Graham ◽  
Robert W. Buckheit ◽  
...  

2007 ◽  
Vol 14 (6) ◽  
pp. 685-692 ◽  
Author(s):  
Yuri Jorge Peña Ramírez ◽  
Ennio Tasciotti ◽  
Abel Gutierrez-Ortega ◽  
Alberto J. Donayre Torres ◽  
María Teresa Olivera Flores ◽  
...  

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) Tat protein is considered a potential candidate vaccine antigen. In an effort to design a strategy for noninvasive vaccination against HIV-1, we developed transgenic tomatoes expressing the Tat protein. Two independent plants testing positive in transgene detection analysis were selected and grown to maturity. Monoclonal antibodies against Tat recognized a protein of the expected size. Interestingly, expression of Tat seemed to be toxic to the plant, as in all cases the fruit exhibited underdeveloped reproductive structures and no seeds. Nine groups of 10 pathogen-free BALB/c male mice were primed either orally, intraperitoneally, or intramuscularly with 10 mg of tomato fruit extract derived from transgenic or wild-type plants and with 10 μg of Tat86 recombinant protein. Mice were immunized at days 0, 14, and 28, and given boosters after 15 weeks; sera were drawn 7 days after each booster, and the antibody titer was determined by enzyme-linked immunosorbent assay. All three immunization approaches induced the development of a strong anti-Tat immunological response, which increased over time. Isotype subclass determination showed the presence of mucosal (immunoglobulin A) immunity soon after the beginning of the oral immunization protocol, and the data were confirmed by the presence of anti-Tat antibodies in fecal pellets and in vaginal washes. We also demonstrated that sera from immunized mice inhibited with high efficiency recombinant Tat-dependent transactivation of the HIV-1 long terminal repeat promoter. This neutralization activity might be relevant for the suppression of extracellular Tat activities, which play an important role in HIV disease development.


1998 ◽  
Vol 72 (9) ◽  
pp. 7632-7637 ◽  
Author(s):  
Fabrizio Mammano ◽  
Caroline Petit ◽  
François Clavel

ABSTRACT We have studied the phenotypic impact of adaptative Gag cleavage site mutations in patient-derived human immunodeficiency virus type 1 (HIV-1) variants having developed resistance to the protease inhibitor ritonavir or saquinavir. We found that Gag mutations occurred in a minority of resistant viruses, regardless of the duration of the treatment and of the protease mutation profile. Gag mutations exerted only a partial corrective effect on resistance-associated loss of viral fitness. Reconstructed viruses with resistant proteases displayed multiple Gag cleavage defects, and in spite of Gag adaptation, several of these defects remained, explaining the limited corrective effect of cleavage site mutations on fitness. Our data provide clear evidence of the interplay between resistance and fitness in HIV-1 evolution in patients treated with protease inhibitors.


Sign in / Sign up

Export Citation Format

Share Document