scholarly journals Holotrichia oblita Midgut Proteins That Bind to Bacillus thuringiensis Cry8-Like Toxin and Assembly of the H. oblita Midgut Tissue Transcriptome

2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Jian Jiang ◽  
Ying Huang ◽  
Changlong Shu ◽  
Mario Soberón ◽  
Alejandra Bravo ◽  
...  

ABSTRACT The Bacillus thuringiensis strain HBF-18 (CGMCC 2070), containing two cry genes (cry8-like and cry8Ga), is toxic to Holotrichia oblita larvae. Both Cry8-like and Cry8Ga proteins are active against this insect pest, and Cry8-like is more toxic. To analyze the characteristics of the binding of Cry8-like and Cry8Ga proteins to brush border membrane vesicles (BBMVs) in H. oblita larvae, binding assays were conducted with a fluorescent DyLight488-labeled Cry8-like toxin. The results of saturation binding assays demonstrated that Cry8-like bound specifically to binding sites on BBMVs from H. oblita, and heterologous competition assays revealed that Cry8Ga shared binding sites with Cry8-like. Furthermore, Cry8-like-binding proteins in the midgut from H. oblita larvae were identified by pulldown assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, the H. oblita midgut transcriptome was assembled by high-throughput RNA sequencing and used for identification of Cry8-like-binding proteins. Eight Cry8-like-binding proteins were obtained from pulldown assays conducted with BBMVs. The LC-MS/MS data for these proteins were successfully matched with the H. oblita transcriptome, and BLASTX results identified five proteins as serine protease, transferrin-like, uncharacterized protein LOC658236 of Tribolium castaneum, ATPase catalytic subunit, and actin. These identified Cry8-like-binding proteins were different from those confirmed previously as receptors for Cry1A proteins in lepidopteran insect species, such as aminopeptidase, alkaline phosphatase, and cadherin. IMPORTANCE Holotrichia oblita is one of the main soil-dwelling pests in China. The larvae damage the roots of crops, resulting in significant yield reductions and economic losses. H. oblita is difficult to control, principally due to its soil-dwelling habits. In recent years, some Cry8 toxins from Bacillus thuringiensis were shown to be active against this pest. Study of the mechanism of action of these Cry8 toxins is needed for their effective use in the control of H. oblita and for their future utilization in transgenic plants. Our work provides important basic data and promotes understanding of the insecticidal mechanism of Cry8 proteins against H. oblita larvae.

2000 ◽  
Vol 66 (4) ◽  
pp. 1553-1558 ◽  
Author(s):  
Carolina Rausell ◽  
Amparo Consuelo Martínez-Ramírez ◽  
Inmaculada García-Robles ◽  
María Dolores Real

ABSTRACT The insecticidal activity and receptor binding properties ofBacillus thuringiensis Cry1A toxins towards the forest pests Thaumetopoea pityocampa (processionary moth) andLymantria monacha (nun moth) were investigated. Cry1Aa, Cry1Ab, and Cry1Ac were highly toxic (corresponding 50% lethal concentration values: 956, 895, and 379 pg/μl, respectively) to first-instar T. pityocampa larvae. During larval development, Cry1Ab and Cry1Ac toxicity decreased with increasing age, although the loss of activity was more pronounced for Cry1Ab. Binding assays with 125I-labelled Cry1Ab and brush border membrane vesicles from T. pityocampa first- and last-instar larvae detected a remarkable decrease in the overall Cry1Ab binding affinity in last-instar larvae, although saturable Cry1Ab binding to both instars was observed. Homologous competition experiments demonstrated the loss of one of the two Cry1Ab high-affinity binding sites detected in first-instar larvae. Growth inhibition assays with sublethal doses of Cry1Aa, Cry1Ab, and Cry1Ac in L. monacha showed that all three toxins were able to delay molting from second instar to third instar. Specific saturable binding of Cry1Ab was detected only in first- and second-instar larvae. Cry1Ab binding was not detected in last-instar larvae, although specific binding of Cry1Aa and Cry1Ac was observed. These results demonstrate a loss of Cry1Ab binding sites during development on the midgut epithelium of T. pityocampa and L. monacha, correlating in T. pityocampa with a decrease in Cry1Ab toxicity with increasing age.


2018 ◽  
Vol 84 (17) ◽  
Author(s):  
Isabel Gómez ◽  
Daniel E. Rodríguez-Chamorro ◽  
Gabriela Flores-Ramírez ◽  
Ricardo Grande ◽  
Fernando Zúñiga ◽  
...  

ABSTRACT Bacillus thuringiensis Cry1Ca is toxic to different Spodoptera species. The aims of this work were to identify the Cry1Ca-binding proteins in S. frugiperda, to provide evidence on their participation in toxicity, and to identify the Cry1Ca amino acid residues involved in receptor binding. Pulldown assays using Spodoptera frugiperda brush border membrane vesicles (BBMV) identified aminopeptidase N (APN), APN1, and APN2 isoforms as Cry1Ca-binding proteins. Cry1Ca alanine substitutions in all residues of domain III β16 were characterized. Two β16 nontoxic mutants (V505A and S506A) showed a correlative defect on binding to the recombinant S. frugiperda APN1 (SfAPN1). Finally, silencing the expression of APN1 transcript, by double-stranded RNA (dsRNA) feeding, showed that silenced larvae are more tolerant of the Cry1Ca toxin, which induced less than 40% mortality in silenced larvae whereas nonsilenced larvae had 100% mortality. Overall, our results show that Cry1Ca relies on APN1 binding through domain III β16 to impart toxicity to S. frugiperda. IMPORTANCE Bacillus thuringiensis Cry toxins rely on receptor binding to exert toxicity. Cry1Ca is toxic to different populations of S. frugiperda, a major corn pest in America. Nevertheless, the S. frugiperda midgut proteins that are involved in Cry1Ca toxicity have not been identified. Here we identified aminopeptidase N1 (APN1) as a functional receptor of Cry1Ca. Moreover, we showed that Cry1Ca domain III β16 is involved in APN1 binding. These results give insights on potential target sites for improving Cry1Ca toxicity to S. frugiperda.


2011 ◽  
Vol 77 (10) ◽  
pp. 3182-3188 ◽  
Author(s):  
C. Gouffon ◽  
A. Van Vliet ◽  
J. Van Rie ◽  
S. Jansens ◽  
J. L. Jurat-Fuentes

ABSTRACTThe use of combinations ofBacillus thuringiensis(Bt) toxins with diverse modes of action for insect pest control has been proposed as the most efficient strategy to increase target range and delay the onset of insect resistance. Considering that most cases of cross-resistance to Bt toxins in laboratory-selected insect colonies are due to alteration of common toxin binding sites, independent modes of action can be defined as toxins sharing limited or no binding sites in brush border membrane vesicles (BBMV) prepared from the target insect larvae. In this paper, we report on the specific binding of Cry2Ae toxin to binding sites on BBMV from larvae of the three most commercially relevant heliothine species,Heliothis virescens,Helicoverpa zea, andHelicoverpa armigera. Using chromatographic purification under reducing conditions before labeling, we detected specific binding of radiolabeled Cry2Ae, which allowed us to perform competition assays using Cry1Ab, Cry1Ac, Cry1Fa, Vip3A, Cry2Ae, and Cry2Ab toxins as competitors. In these assays, Cry2Ae binding sites were shared with Cry2Ab but not with the tested Cry1 or Vip3A toxins. Our data support the use of Cry2Ae toxin in combination with Cry1 or Vip3A toxins in strategies to increase target range and delay the onset of heliothine resistance.


2015 ◽  
Vol 81 (11) ◽  
pp. 3699-3705 ◽  
Author(s):  
Can Zhao ◽  
Juan Luis Jurat-Fuentes ◽  
Heba M. Abdelgaffar ◽  
Hongyu Pan ◽  
Fuping Song ◽  
...  

ABSTRACTPyramiding of diversecrytoxin genes fromBacillus thuringiensiswith different modes of action is a desirable strategy to delay the evolution of resistance in the European corn borer (Ostrinia nubilalis). Considering the dependency of susceptibility to Cry toxins on toxin binding to receptors in the midgut of target pests, a diverse mode of action is commonly defined as recognition of unique binding sites in the target insect. In this study, we present a novelcry1Ietoxin gene (cry1Ie2) as a candidate for pyramiding with Cry1Ab or Cry1Fa in corn to controlOstriniaspecies larvae. The new toxin gene encodes an 81-kDa protein that is processed to a protease-resistant core form of approximately 55 kDa by trypsin digestion. The purified protoxin displayed high toxicity toOstrinia furnacalisandO. nubilalislarvae but low to no activity againstSpodopteraor heliothine species or the coleopteranTenebrio molitor. Results of binding assays with125I-labeled Cry1Ab toxin and brush border membrane vesicles fromO. nubilalislarvae demonstrated that Cry1Ie2 does not recognize the Cry1Ab binding sites in that insect. Reciprocal competition binding assays with biotin-labeled Cry1Ie2 confirmed the lack of shared sites with Cry1Ab or Cry1Fa inO. nubilalisbrush border membrane vesicles. These data support Cry1Ie2 as a good candidate for pyramiding with Cry1Ab or Cry1Fa in corn to increase the control ofO. nubilalisand reduce the risk of resistance evolution.


2014 ◽  
Vol 80 (24) ◽  
pp. 7545-7550 ◽  
Author(s):  
Patricia Hernández-Martínez ◽  
Natalia Mara Vera-Velasco ◽  
María Martínez-Solís ◽  
Marc Ghislain ◽  
Juan Ferré ◽  
...  

ABSTRACTBacillus thuringiensisCry3Bb, Cry3Ca, and Cry7Aa have been reported to be toxic against larvae of the genusCylas, which are important pests of sweet potato worldwide and particularly in sub-Saharan Africa. However, relatively little is known about the processing and binding interactions of these coleopteran-specific Cry proteins. The aim of the present study was to determine whether Cry3Bb, Cry3Ca, and Cry7Aa proteins have shared binding sites inCylas puncticollisto orient the pest resistance strategy by genetic transformation. Interestingly, processing of the 129-kDa Cry7Aa protoxin using commercial trypsin or chymotrypsin rendered two fragments of about 70 kDa and 65 kDa. N-terminal sequencing of the trypsin-activated Cry7Aa fragments revealed that processing occurs at Glu47for the 70-kDa form or Ile88for the 65-kDa form. Homologous binding assays showed specific binding of the two Cry3 proteins and the 65-kDa Cry7Aa fragment to brush border membrane vesicles (BBMV) fromC. puncticollislarvae. The 70-kDa fragment did not bind to BBMV. Heterologous-competition assays showed that Cry3Bb, Cry3Ca, and Cry7Aa (65-kDa fragment) competed for the same binding sites. Hence, our results suggest that pest resistance mediated by the alteration of a shared Cry receptor binding site might render all three Cry toxins ineffective.


1989 ◽  
Vol 259 (2) ◽  
pp. 385-396 ◽  
Author(s):  
T C Evans ◽  
D L Nelson

To identify protein targets for calmodulin (CaM) in the cilia of Paramecium tetraurelia, we employed a 125I-CaM blot assay after resolution of ciliary proteins on SDS/polyacrylamide gels. Two distinct types of CaM-binding proteins were detected. One group bound 125I-CaM at free Ca2+ concentrations above 0.5-1 microM and included a major binding activity of 63 kDa (C63) and activities of 126 kDa (C126), 96 kDa (C96), and 36 kDa (C36). CaM bound these proteins with high (nanomolar) affinity and specificity relative to related Ca2+ receptors. The second type of protein bound 125I-CaM only when the free Ca2+ concentration was below 1-2 microM and included polypeptides of 95 kDa (E95) and 105 kDa (E105). E105 may also contain Ca2+-dependent binding sites for CaM. Both E95 and E105 exhibited strong specificity for Paramecium CaM over bovine CaM. Ciliary subfractionation experiments suggested that C63, C126, C96, E95, and E105 are bound to the axoneme, whereas C36 is a soluble and/or membrane-associated protein. Additional Ca2+-dependent CaM-binding proteins of 63, 70, and 120 kDa were found associated with ciliary membrane vesicles. In support of these results, filtration binding assays also indicated high-affinity binding sites for CaM on isolated intact axonemes and suggested the presence of both Ca2+-dependent and Ca2+-inhibitable targets. Like E95 and E105, the Ca2+-inhibitable CaM-binding sites showed strong preference for Paramecium CaM over vertebrate CaM and troponin C. Together, these results suggest that CaM has multiple targets in the cilium and hence may regulate ciliary motility in a complex and pleiotropic fashion.


2009 ◽  
Vol 75 (7) ◽  
pp. 2236-2237 ◽  
Author(s):  
Janete A. D. Sena ◽  
Carmen Sara Hernández-Rodríguez ◽  
Juan Ferré

ABSTRACT Vip3Aa, Vip3Af, Cry1Ab, and Cry1Fa were tested for their toxicities and binding interactions. Vip3A proteins were more toxic than Cry1 proteins. Binding assays showed independent specific binding sites for Cry1 and Vip3A proteins. Cry1Ab and Cry1Fa competed for the same binding sites, whereas Vip3Aa competed for those of Vip3Af.


mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Elizabeth A. Cameron ◽  
Kurt J. Kwiatkowski ◽  
Byung-Hoo Lee ◽  
Bruce R. Hamaker ◽  
Nicole M. Koropatkin ◽  
...  

ABSTRACT To compete for the dynamic stream of nutrients flowing into their ecosystem, colonic bacteria must respond rapidly to new resources and then catabolize them efficiently once they are detected. The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model for nutrient acquisition by symbiotic gut bacteria, which harbor thousands of related Sus-like systems. Structural investigation of the four Sus outer membrane proteins (SusD, -E, -F, and -G) revealed that they contain a total of eight starch-binding sites that we demonstrated, using genetic and biochemical approaches, to play distinct roles in starch metabolism in vitro and in vivo in gnotobiotic mice. SusD, whose homologs are abundant in the human microbiome, is critical for the initial sensing of available starch, allowing sus transcriptional activation at much lower concentrations than without this function. In contrast, seven additional binding sites across SusE, -F, and -G are dispensable for sus activation. However, they optimize the rate of growth on starch in a manner dependent on the expression of the bacterial polysaccharide capsule, suggesting that they have evolved to offset the diffusion barrier created by this structure. These findings demonstrate how proteins with similar biochemical behavior can serve orthogonal functions during different stages of cellular adaptation to nutrients. Finally, we demonstrated in gnotobiotic mice fed a starch-rich diet that the Sus binding sites confer a competitive advantage to B. thetaiotaomicron in vivo in a manner that is dependent on other colonizing microbes. This study reveals how numerically dominant families of carbohydrate-binding proteins in the human microbiome fulfill separate and sometimes cooperative roles to optimize gut commensal bacteria for nutrient acquisition. IMPORTANCE Our intestinal tract harbors trillions of symbiotic microbes. A critical function contributed by this microbial community is the ability to degrade most of the complex carbohydrates in our diet, which not only change from meal to meal but also cannot be digested by our own bodies. A numerically abundant group of gut bacteria called the Bacteroidetes plays a prominent role in carbohydrate digestion in humans and other animals. Currently, the mechanisms that allow this bacterial group to rapidly respond to available carbohydrates and then digest them efficiently are unclear. Here, we present novel functions for four carbohydrate-binding proteins present in one member of the Bacteroidetes, revealing that these proteins serve unique and separable roles in either initial nutrient sensing or subsequent digestion. Because the protein families investigated are numerous in other gut bacteria colonizing nearly all humans and animals, our findings are fundamentally important to understanding how symbiotic microbes assist human digestion.


2008 ◽  
Vol 74 (24) ◽  
pp. 7654-7659 ◽  
Author(s):  
Carmen Sara Hernández-Rodríguez ◽  
Adri Van Vliet ◽  
Nadine Bautsoens ◽  
Jeroen Van Rie ◽  
Juan Ferré

ABSTRACT For a long time, it has been assumed that the mode of action of Cry2A toxins was unique and different from that of other three-domain Cry toxins due to their apparent nonspecific and unsaturable binding to an unlimited number of receptors. However, based on the homology of the tertiary structure among three-domain Cry toxins, similar modes of action for all of them are expected. To confirm this hypothesis, binding assays were carried out with 125I-labeled Cry2Ab. Saturation assays showed that Cry2Ab binds in a specific and saturable manner to brush border membrane vesicles (BBMVs) of Helicoverpa armigera. Homologous-competition assays with 125I-Cry2Ab demonstrated that this toxin binds with high affinity to binding sites in H. armigera and Helicoverpa zea midgut. Heterologous-competition assays showed a common binding site for three toxins belonging to the Cry2A family (Cry2Aa, Cry2Ab, and Cry2Ae), which is not shared by Cry1Ac. Estimation of K d (dissociation constant) values revealed that Cry2Ab had around 35-fold less affinity than Cry1Ac for BBMV binding sites in both insect species. Only minor differences were found regarding R t (concentration of binding sites) values. This study questions previous interpretations from other authors performing binding assays with Cry2A toxins and establishes the basis for the mode of action of Cry2A toxins.


Sign in / Sign up

Export Citation Format

Share Document