gnotobiotic mice
Recently Published Documents


TOTAL DOCUMENTS

283
(FIVE YEARS 57)

H-INDEX

42
(FIVE YEARS 6)

Author(s):  
Lin Liu ◽  
Mariana E. Kirst ◽  
Lisa Zhao ◽  
Eric Li ◽  
Gary P. Wang

Antibiotics cause imbalance of gut microbiota, which in turn increase our susceptibility to gastrointestinal infections. However, how antibiotics disrupt gut bacterial communities is not well understood, and exposing healthy volunteers to unnecessary antibiotics for research purposes carries clinical and ethical concerns.


2022 ◽  
Author(s):  
Kali M. Pruss ◽  
Fatima Enam ◽  
Eric Battaglioli ◽  
Mary DeFeo ◽  
Oscar R. Diaz ◽  
...  

AbstractThe enteric pathogen Clostridioides difficile (Cd) is responsible for a toxin-mediated infection that causes more than 200,000 recorded hospitalizations and 13,000 deaths in the United States every year1. However, Cd can colonize the gut in the absence of disease symptoms. Prevalence of asymptomatic colonization by toxigenic Cd in healthy populations is high; asymptomatic carriers are at increased risk of infection compared to noncolonized individuals and may be a reservoir for transmission of Cd infection2,3. Elucidating the molecular mechanisms by which Cd persists in the absence of disease is necessary for understanding pathogenesis and developing refined therapeutic strategies. Here, we show with gut microbiome metatranscriptomic analysis that mice recalcitrant to Cd infection and inflammation exhibit increased community-wide expression of arginine and ornithine metabolic pathways. To query Cd metabolism specifically, we leverage RNA sequencing in gnotobiotic mice infected with two wild-type strains (630 and R20291) and isogenic toxin-deficient mutants of these strains to differentiate inflammation-dependent versus -independent transcriptional states. A single operon encoding oxidative ornithine degradation is consistently upregulated across non-toxigenic Cd strains. Combining untargeted and targeted metabolomics with bacterial and host genetics, we demonstrate that both diet- and host-derived sources of ornithine provide a competitive advantage to Cd, suggesting a mechanism for Cd persistence within a non-inflammatory, healthy gut.


2021 ◽  
Author(s):  
Veronika Kuchařová Pettersen ◽  
Antoine Dufour ◽  
Marie-Claire Arrieta

Abstract Background: Eukaryotic microbes can modulate mammalian host health and disease states, yet the molecular contribution of gut fungi remains nascent. We previously showed that mice exclusively colonised with fungi displayed increased sensitivity to allergic airway inflammation and had fecal metabolite profiles similar to germ-free mice. This marginal effect on the host metabolome suggested that fungi do not primarily use metabolites to modulate the host immune system.Methods: To describe functional changes attributed to fungal colonisation, we performed mass spectrometry-based analyses of feces (Label-Free Quantitative; LFQ) and the small intestine (labeling with Tandem Mass Tag; TMT) of gnotobiotic mice colonised with defined consortia of twelve bacterial species, five fungal species, or both. We also evaluated the effect of microbiome perturbances on the metaproteome by analysing feces from mouse pups treated with an antibiotic or antifungal.Results: We detected 6,675 proteins in the mice feces, of which 3,845 had determined LFQ levels. Analysis of variance showed changes in the different gnotobiotic mouse groups; specifically, 46% of 2,860 bacterial, 15% of 580 fungal, and 76% of 405 mouse quantified proteins displayed differential levels. The antimicrobial treatments resulted in lasting changes in the bacterial and fungal proteomes, suggesting that the antimicrobials impacted the entire community. Fungal colonisation resulted in changes in host proteins functional in innate immunity as well as metabolism, predicting specific roles of gut fungi on host systems during early developmental stages. Several of the detected fungal proteins (3% of 1,492) have been previously reported as part of extracellular vesicles and having immunomodulating properties. Using an isobaric labelling TMT approach for profiling low abundant proteins of the jejunal tissue, we confirmed that the five fungal species differentially impacted the host intestinal proteome compared to the bacterial consortium. The detected changes in mouse jejunal proteins (4% of 1,514) were mainly driven by metabolic proteins. Conclusions: We used quantitative proteomic profiling of gnotobiotic conditions to show how colonisation with selected fungal species impacts the host gut proteome. Our results suggest that an increased abundance of certain gut fungal species in early life may affect the developing intracellular attributes of epithelial and immune cells.


2021 ◽  
Author(s):  
Daniel Hoces ◽  
Jiayi Lan ◽  
Sun Wenfei ◽  
Tobias Geiser ◽  
Markus Arnoldini ◽  
...  

SUMMARYMicrobiota composition correlates with host metabolic health in both humans and mice. Here we investigated the extent to which a gnotobiotic microbiota can mimic the influence of a complete microbiota on mouse metabolism using an isolator-housed TSE-PhenoMaster® system. We found that energy expenditure was equivalent between germ-free (GF) and specific-opportunistic-pathogen free line (SPF) mice, and we extend this observation to the OligoMM12 microbiota (12 species across 5 phyla that are naturally abundant in a murine gut microbiota). Moreover, microbiota-released calories were well compensated by food intake in all groups. However, each group of mice have a distinctive circadian metabolic profile. OligoMM12 clustered with GF during the light phase, but with SPF during the dark phase for both RER and metabolome. Therefore, interactions between the host and a reductionist microbiota are non-uniform over the circadian cycle, revealing a promising tool to identify key microbiota species/functions that modify host metabolism.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Connor R. Tiffany ◽  
Jee-Yon Lee ◽  
Andrew W. L. Rogers ◽  
Erin E. Olsan ◽  
Pavel Morales ◽  
...  

Abstract Background The catabolic activity of the microbiota contributes to health by aiding in nutrition, immune education, and niche protection against pathogens. However, the nutrients consumed by common taxa within the gut microbiota remain incompletely understood. Methods Here we combined microbiota profiling with an un-targeted metabolomics approach to determine whether depletion of small metabolites in the cecum of mice correlated with the presence of specific bacterial taxa. Causality was investigated by engrafting germ-free or antibiotic-treated mice with complex or defined microbial communities. Results We noted that a depletion of Clostridia and Erysipelotrichia from the gut microbiota triggered by antibiotic treatment was associated with an increase in the cecal concentration of sugar acids and sugar alcohols (polyols). Notably, when we inoculated germ-free mice with a defined microbial community of 14 Clostridia and 3 Erysipelotrichia isolates, we observed the inverse, with a marked decrease in the concentrations of sugar acids and polyols in cecal contents. The carbohydrate footprint produced by the defined microbial community was similar to that observed in gnotobiotic mice receiving a cecal microbiota transplant from conventional mice. Supplementation with sorbitol, a polyol used as artificial sweetener, increased cecal sorbitol concentrations in antibiotic-treated mice, which was abrogated after inoculation with a Clostridia isolate able to grow on sorbitol in vitro. Conclusions We conclude that consumption of sugar alcohols by Clostridia and Erysipelotrichia species depletes these metabolites from the intestinal lumen during homeostasis.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009719
Author(s):  
Franziska A. Graef ◽  
Larissa S. Celiberto ◽  
Joannie M. Allaire ◽  
Mimi T. Y. Kuan ◽  
Else S. Bosman ◽  
...  

Reducing food intake is a common host response to infection, yet it remains unclear whether fasting is detrimental or beneficial to an infected host. Despite the gastrointestinal tract being the primary site of nutrient uptake and a common route for infection, studies have yet to examine how fasting alters the host’s response to an enteric infection. To test this, mice were fasted before and during oral infection with the invasive bacterium Salmonella enterica serovar Typhimurium. Fasting dramatically interrupted infection and subsequent gastroenteritis by suppressing Salmonella’s SPI-1 virulence program, preventing invasion of the gut epithelium. Virulence suppression depended on the gut microbiota, as Salmonella’s invasion of the epithelium proceeded in fasting gnotobiotic mice. Despite Salmonella’s restored virulence within the intestines of gnotobiotic mice, fasting downregulated pro-inflammatory signaling, greatly reducing intestinal pathology. Our study highlights how food intake controls the complex relationship between host, pathogen and gut microbiota during an enteric infection.


2021 ◽  
Author(s):  
Mericien Venzon ◽  
Ritika Das ◽  
Daniel J. Luciano ◽  
Hyun Shin Park ◽  
Eric T. Kool ◽  
...  

Trichuris nematodes reproduce within the microbiota-rich mammalian intestine, yet microbial byproducts that facilitate the parasite lifecycle are unknown. Here, we report a novel pipeline to identify microbial factors with conserved roles in the reproduction of nematodes. A screen for E. coli mutants that impair C. elegans fertility identified genes in fatty acid biosynthesis and ethanolamine utilization pathways, including fabH and eutN. Trichuris muris eggs displayed defective hatching in the presence of E. coli deficient in fabH or eutN due to reduction in arginine or elevated levels of aldehydes, respectively. Remarkably, T. muris reared in gnotobiotic mice colonized with these E. coli mutants failed to lay viable eggs. These findings indicate that microbial byproducts mediate evolutionarily conserved transkingdom interactions that impact reproductive fitness of distantly-related nematodes.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Sandra Reitmeier ◽  
Thomas C. A. Hitch ◽  
Nicole Treichel ◽  
Nikolaos Fikas ◽  
Bela Hausmann ◽  
...  

Abstract16S rRNA gene amplicon sequencing is a popular approach for studying microbiomes. However, some basic concepts have still not been investigated comprehensively. We studied the occurrence of spurious sequences using defined microbial communities based on data either from the literature or generated in three sequencing facilities and analyzed via both operational taxonomic units (OTUs) and amplicon sequence variants (ASVs) approaches. OTU clustering and singleton removal, a commonly used approach, delivered approximately 50% (mock communities) to 80% (gnotobiotic mice) spurious taxa. The fraction of spurious taxa was generally lower based on ASV analysis, but varied depending on the gene region targeted and the barcoding system used. A relative abundance of 0.25% was found as an effective threshold below which the analysis of spurious taxa can be prevented to a large extent in both OTU- and ASV-based analysis approaches. Using this cutoff improved the reproducibility of analysis, i.e., variation in richness estimates was reduced by 38% compared with singleton filtering using six human fecal samples across seven sequencing runs. Beta-diversity analysis of human fecal communities was markedly affected by both the filtering strategy and the type of phylogenetic distances used for comparison, highlighting the importance of carefully analyzing data before drawing conclusions on microbiome changes. In summary, handling of artifact sequences during bioinformatic processing of 16S rRNA gene amplicon data requires careful attention to avoid the generation of misleading findings. We propose the concept of effective richness to facilitate the comparison of alpha-diversity across studies.


Nature ◽  
2021 ◽  
Author(s):  
Omar Delannoy-Bruno ◽  
Chandani Desai ◽  
Arjun S. Raman ◽  
Robert Y. Chen ◽  
Matthew C. Hibberd ◽  
...  
Keyword(s):  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1496
Author(s):  
Noemí Cabré ◽  
Yi Duan ◽  
Cristina Llorente ◽  
Mary Conrad ◽  
Patrick Stern ◽  
...  

Alcohol-related liver disease is associated with intestinal dysbiosis. Functional changes in the microbiota affect bile acid metabolism and result in elevated serum bile acids in patients with alcohol-related liver disease. The aim of this study was to identify the potential role of the bile acid sequestrant colesevelam in a humanized mouse model of ethanol-induced liver disease. We colonized germ-free (GF) C57BL/6 mice with feces from patients with alcoholic hepatitis and subjected humanized mice to the chronic–binge ethanol feeding model. Ethanol-fed gnotobiotic mice treated with colesevelam showed reduced hepatic levels of triglycerides and cholesterol, but liver injury and inflammation were not decreased as compared with non-treated mice. Colesevelam reduced hepatic cytochrome P450, family 7, subfamily a, polypeptide 1 (Cyp7a1) protein expression, although serum bile acids were not lowered. In conclusion, our findings indicate that colesevelam treatment mitigates ethanol-induced liver steatosis in mice.


Sign in / Sign up

Export Citation Format

Share Document