paramecium tetraurelia
Recently Published Documents


TOTAL DOCUMENTS

422
(FIVE YEARS 22)

H-INDEX

38
(FIVE YEARS 2)

2021 ◽  
Vol 9 (9) ◽  
pp. 1979
Author(s):  
Valerio Vitali ◽  
Rebecca Rothering ◽  
Francesco Catania

Amitosis is a widespread form of unbalanced nuclear division whose biomedical and evolutionary significance remain unclear. Traditionally, insights into the genetics of amitosis have been gleaned by assessing the rate of phenotypic assortment. Though powerful, this experimental approach relies on the availability of phenotypic markers. Leveraging Paramecium tetraurelia, a unicellular eukaryote with nuclear dualism and a highly polyploid somatic nucleus, we probe the limits of single-cell whole-genome sequencing to study the consequences of amitosis. To this end, we first evaluate the suitability of single-cell sequencing to study the AT-rich genome of P. tetraurelia, focusing on common sources of genome representation bias. We then asked: can alternative rearrangements of a given locus eventually assort after a number of amitotic divisions? To address this question, we track somatic assortment of developmentally acquired Internal Eliminated Sequences (IESs) up to 50 amitotic divisions post self-fertilization. To further strengthen our observations, we contrast empirical estimates of IES retention levels with in silico predictions obtained through mathematical modeling. In agreement with theoretical expectations, our empirical findings are consistent with a mild increase in variation of IES retention levels across successive amitotic divisions of the macronucleus. The modest levels of somatic assortment in P. tetraurelia suggest that IESs retention levels are largely sculpted at the time of macronuclear development, and remain fairly stable during vegetative growth. In forgoing the requirement for phenotypic assortment, our approach can be applied to a wide variety of amitotic species and could facilitate the identification of environmental and genetic factors affecting amitosis.


2021 ◽  
Author(s):  
Stefano Gnan ◽  
Melody Matelot ◽  
Marion Weiman ◽  
Olivier Arnaiz ◽  
Frederic Guerin ◽  
...  

Eukaryotic genes are interrupted by introns that must be accurately spliced from mRNA precursors. With an average length of 25 nt, the >90,000 introns of Paramecium tetraurelia stand among the shortest introns reported in eukaryotes. The mechanisms specifying the correct recognition of these tiny introns remain poorly understood. Splicing can occur co-transcriptionally and it has been proposed that chromatin structure might influence splice site recognition. To investigate the roles of nucleosome positioning in intron recognition, we determined the nucleosome occupancy along the P. tetraurelia genome. We showed that P. tetraurelia displays a regular nucleosome array with a nucleosome repeat length of ~151 bp, amongst the smallest periodicities reported. Our analysis revealed that introns are frequently associated with inter-nucleosomal DNA, pointing to an evolutionary constraint to locate introns at the AT-rich nucleosome edge sequences. Using accurate splicing efficiency data from cells depleted for the nonsense-mediated decay effectors, we showed that introns located at the edge of nucleosomes display higher splicing efficiency than those at the centre. However, multiple regression analysis indicated that the GC content, rather than nucleosome positioning, directly contributes to intron splicing efficiency. Our data reveal a complex link between GC content, nucleosome positioning and intron evolution in Paramecium.


PLoS Biology ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. e3001309
Author(s):  
Diamantis Sellis ◽  
Frédéric Guérin ◽  
Olivier Arnaiz ◽  
Walker Pett ◽  
Emmanuelle Lerat ◽  
...  

Ciliates are unicellular eukaryotes with both a germline genome and a somatic genome in the same cytoplasm. The somatic macronucleus (MAC), responsible for gene expression, is not sexually transmitted but develops from a copy of the germline micronucleus (MIC) at each sexual generation. In the MIC genome of Paramecium tetraurelia, genes are interrupted by tens of thousands of unique intervening sequences called internal eliminated sequences (IESs), which have to be precisely excised during the development of the new MAC to restore functional genes. To understand the evolutionary origin of this peculiar genomic architecture, we sequenced the MIC genomes of 9 Paramecium species (from approximately 100 Mb in Paramecium aurelia species to >1.5 Gb in Paramecium caudatum). We detected several waves of IES gains, both in ancestral and in more recent lineages. While the vast majority of IESs are single copy in present-day genomes, we identified several families of mobile IESs, including nonautonomous elements acquired via horizontal transfer, which generated tens to thousands of new copies. These observations provide the first direct evidence that transposable elements can account for the massive proliferation of IESs in Paramecium. The comparison of IESs of different evolutionary ages indicates that, over time, IESs shorten and diverge rapidly in sequence while they acquire features that allow them to be more efficiently excised. We nevertheless identified rare cases of IESs that are under strong purifying selection across the aurelia clade. The cases examined contain or overlap cellular genes that are inactivated by excision during development, suggesting conserved regulatory mechanisms. Similar to the evolution of introns in eukaryotes, the evolution of Paramecium IESs highlights the major role played by selfish genetic elements in shaping the complexity of genome architecture and gene expression.


2021 ◽  
Vol 224 (9) ◽  
Author(s):  
Junji Yano ◽  
Russell Wells ◽  
Ying-Wai Lam ◽  
Judith L. Van Houten

ABSTRACT Calcium ions (Ca2+) entering cilia through the ciliary voltage-gated calcium channels (CaV) during the action potential causes reversal of the ciliary power stroke and backward swimming in Paramecium tetraurelia. How calcium is returned to the resting level is not yet clear. Our focus is on calcium pumps as a possible mechanism. There are 23 P. tetraurelia genes for calcium pumps that are members of the family of plasma membrane Ca2+ ATPases (PMCAs). They have domains homologous to those found in mammalian PMCAs. Of the 13 pump proteins previously identified in cilia, ptPMCA2a and ptPMCA2b are most abundant in the cilia. We used RNAi to examine which PMCA might be involved in regulating intraciliary Ca2+ after the action potential. RNAi for only ptPMCA2a and ptPMCA2b causes cells to significantly prolong their backward swimming, which indicates that Ca2+ extrusion in the cilia is impaired when these PMCAs are depleted. We used immunoprecipitations (IP) to find that ptPMCA2a and ptPMCA2b are co-immunoprecipitated with the CaV channel α1 subunits that are found only in the cilia. We used iodixanol (OptiPrep) density gradients to show that ptPMCA2a and ptPMCA2b and CaV1c are found in the same density fractions. These results suggest that ptPMCA2a and ptPMCA2b are located in the proximity of ciliary CaV channels.


Mobile DNA ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marc Guérineau ◽  
Luiza Bessa ◽  
Séverine Moriau ◽  
Ewen Lescop ◽  
François Bontems ◽  
...  

Abstract Background Transposons are mobile genetic elements that colonize genomes and drive their plasticity in all organisms. DNA transposon-encoded transposases bind to the ends of their cognate transposons and catalyze their movement. In some cases, exaptation of transposon genes has allowed novel cellular functions to emerge. The PiggyMac (Pgm) endonuclease of the ciliate Paramecium tetraurelia is a domesticated transposase from the PiggyBac family. It carries a core catalytic domain typical of PiggyBac-related transposases and a short cysteine-rich domain (CRD), flanked by N- and C-terminal extensions. During sexual processes Pgm catalyzes programmed genome rearrangements (PGR) that eliminate ~ 30% of germline DNA from the somatic genome at each generation. How Pgm recognizes its DNA cleavage sites in chromatin is unclear and the structure-function relationships of its different domains have remained elusive. Results We provide insight into Pgm structure by determining the fold adopted by its CRD, an essential domain required for PGR. Using Nuclear Magnetic Resonance, we show that the Pgm CRD binds two Zn2+ ions and forms an unusual binuclear cross-brace zinc finger, with a circularly permutated treble-clef fold flanked by two flexible arms. The Pgm CRD structure clearly differs from that of several other PiggyBac-related transposases, among which is the well-studied PB transposase from Trichoplusia ni. Instead, the arrangement of cysteines and histidines in the primary sequence of the Pgm CRD resembles that of active transposases from piggyBac-like elements found in other species and of human PiggyBac-derived domesticated transposases. We show that, unlike the PB CRD, the Pgm CRD does not bind DNA. Instead, it interacts weakly with the N-terminus of histone H3, whatever its lysine methylation state. Conclusions The present study points to the structural diversity of the CRD among transposases from the PiggyBac family and their domesticated derivatives, and highlights the diverse interactions this domain may establish with chromatin, from sequence-specific DNA binding to contacts with histone tails. Our data suggest that the Pgm CRD fold, whose unusual arrangement of cysteines and histidines is found in all PiggyBac-related domesticated transposases from Paramecium and Tetrahymena, was already present in the ancestral active transposase that gave rise to ciliate domesticated proteins.


2021 ◽  
Author(s):  
Valerio Vitali ◽  
Rebecca Rothering ◽  
Francesco Catania

Amitosis is a widespread form of unbalanced nuclear division whose biomedical and evolutionary significance remain unclear. Traditionally, insights into the genetics of amitosis are acquired by assessing the rate of phenotypic assortment. The phenotypic diversification of heterozygous clones during successive cell divisions reveals the random segregation of alleles to daughter nuclei. Though powerful, this experimental approach relies on the availability of phenotypic markers. Here, we present an approach that overcomes the requirement for phenotypic assortment. Leveraging Paramecium tetraurelia, a unicellular eukaryote with nuclear dimorphism and a highly polyploid somatic nucleus, we use single-cell whole-genome sequencing to track the assortment of developmentally acquired somatic DNA variants. Accounting for genome representation biases, we measure the effect of amitosis on allele segregation across the first ~50 amitotic divisions post self-fertilization and compare our empirical findings with theoretical predictions estimated via mathematical modeling. In line with our simulations, we show that amitosis in P. tetraurelia produces measurable but modest levels of somatic assortment. In forgoing the requirement for phenotypic assortment and employing developmental, environmentally induced somatic variation as molecular markers, our work provides a new powerful approach to investigate the consequences of amitosis in polyploid cells.


Author(s):  
Alexis Hardy ◽  
Mélody Matelot ◽  
Amandine Touzeau ◽  
Christophe Klopp ◽  
Céline Lopez-Roques ◽  
...  

Abstract Motivation Long-read sequencing technologies can be employed to detect and map DNA modifications at the nucleotide resolution on a genome-wide scale. However, published software packages neglect the integration of genomic annotation and comprehensive filtering when analyzing patterns of modified bases detected using Pacific Biosciences (PacBio) or Oxford Nanopore Technologies (ONT) data. Here, we present DNAModAnnot, a R package designed for the global analysis of DNA modification patterns using adapted filtering and visualization tools. Results We tested our package using PacBio sequencing data to analyze patterns of the 6-methyladenine (6 mA) in the ciliate Paramecium tetraurelia, in which high 6 mA amounts were previously reported. We found Paramecium tetraurelia 6 mA genome-wide distribution to be similar to other ciliates. We also performed 5-methylcytosine (5mC) analysis in human lymphoblastoid cells using ONT data and confirmed previously known patterns of 5mC. DNAModAnnot provides a toolbox for the genome-wide analysis of different DNA modifications using PacBio and ONT long-read sequencing data. Availability DNAModAnnot is distributed as a R package available via GitHub (https://github.com/AlexisHardy/DNAModAnnot) Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
◽  
Sivarajan Karunanithi

In the last two decades, our understanding of human gene regulation has improved tremendously. There are plentiful computational methods which focus on integrative data analysis of humans, and model organisms, like mouse and drosophila. However, these tools are not directly employable by researchers working on non-model organisms to answer fundamental biological, and evolutionary questions. We aimed to develop new tools, and adapt existing software for the analysis of transcriptomic and epigenomic data of one such non-model organism, Paramecium tetraurelia, an unicellular eukaryote. Paramecium contains two diploid (2n) germline micronuclei (MIC) and a polyploid (800n) somatic macronuclei (MAC). The transcriptomic and epigenomic regulatory landscape of the MAC genome, which has 80% protein-coding genes and short intergenic regions, is poorly understood. We developed a generic automated eukaryotic short interfering RNA (siRNA) analysis tool, called RAPID. Our tool captures diverse siRNA characteristics from small RNA sequencing data and provides easily navigable visualisations. We also introduced a normalisation technique to facilitate comparison of multiple siRNA-based gene knockdown studies. Further, we developed a pipeline to characterise novel genome-wide endogenous short interfering RNAs (endo-siRNAs). In contrary to many organisms, we found that the endo-siRNAs are not acting in cis, to silence their parent mRNA. We also predicted phasing of siRNAs, which are regulated by the RNA interference (RNAi) pathway. Further, using RAPID, we investigated the aberrations of endo-siRNAs, and their respective transcriptomic alterations caused by an RNAi pathway triggered by feeding small RNAs against a target gene. We find that the small RNA transcriptome is altered, even if a gene unrelated to RNAi pathway is targeted. This is important in the context of investigations of genetically modified organisms (GMOs). We suggest that future studies need to distinguish transcriptomic changes caused by RNAi inducing techniques and actual regulatory changes. Subsequently, we adapted existing epigenomics analysis tools to conduct the first comprehensive epigenomic characterisation of nucleosome positioning and histone modifications of the Paramecium MAC. We identified well positioned nucleosomes shifted downstream of the transcription start site. GC content seems to dictate, in cis, the positioning of nucleosomes, histone marks (H3K4me3, H3K9ac, and H3K27me3), and Pol II in the AT-rich Paramecium genome. We employed a chromatin state segmentation approach, on nucleosomes and histone marks, which revealed genes with active, repressive, and bivalent chromatin states. Further, we constructed a regulatory association network of all the aforementioned data, using the sparse partial correlation network technique. Our analysis revealed subsets of genes, whose expression is positively associated with H3K27me3, different to the otherwise reported negative association with gene expression in many other organisms. Further, we developed a Random Forests classifier to predict gene expression using genic (gene length, intron frequency, etc.) and epigenetic features. Our model has a test performance (PR-AUC) of 0.83. Upon evaluating different feature sets, we found that genic features are as predictive, of gene expression, as the epigenetic features. We used Shapley local feature explanation values, to suggest that high H3K4me3, high intron frequency, low gene length, high sRNA, and high GC content are the most important elements for determining gene expression status. In this thesis, we developed novel tools, and employed several bioinformatics and machine learning methods to characterise the regulatory landscape of the Paramecium’s (epi)genome.


Sign in / Sign up

Export Citation Format

Share Document