helicoverpa zea
Recently Published Documents


TOTAL DOCUMENTS

600
(FIVE YEARS 101)

H-INDEX

43
(FIVE YEARS 6)

Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
Joseph L. Black ◽  
Gus M. Lorenz ◽  
Aaron J. Cato ◽  
Nick R. Bateman ◽  
Nicholas J. Seiter

Helicoverpa armigera nucleopolyhedrovirus (HearNPV) is a naturally occurring virus commercially produced for control of Heliothines, including Helicoverpa zea. One drawback with using this virus for control has been the slower time to mortality compared with synthetic insecticides. However, a new formulation (Heligen®) has anecdotally been thought to result in quicker mortality than previously observed. The objective of this study was to evaluate percent defoliation, the efficacy of HearNPV on mortality for each H. zea larval instar, and the potential for control of a second infestation. Fourteen days after the first infestation, all plants were re-infested with a second instar larva to simulate a second infestation. Helicoverpa armigera nucleopolyhedrovirus was effective at killing 1st–3rd instars, resulting in 99% mortality over 4–6 days. However, 4th and 5th instar mortality only reached 35%. Second infestation larvae died between 3.4 and 3.8 days, significantly faster than the 1st infestation of 2nd instars, which had a mean time to mortality of 4.9 days. An increase in mortality rate is probably due to increasing viral concentrations after viral replication within the first hosts. Final defoliation percentages were significantly smaller in the treated plants versus the untreated plants. Only 3rd and 4th instar larvae caused percent defoliation to exceed the current Arkansas action threshold of 40%. Helicoverpa armigera nucleopolyhedrovirus in the Heligen formulation can control 1st–3rd instars within 4–6 days, while keeping defoliation below the action threshold of 40%.


Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 79
Author(s):  
Haoxiang Zhao ◽  
Xiaoqing Xian ◽  
Zihua Zhao ◽  
Guifen Zhang ◽  
Wanxue Liu ◽  
...  

Helicoverpa zea, a well-documented and endemic pest throughout most of the Americas, affecting more than 100 species of host plants. It is a quarantine pest according to the Asia and Pacific Plant Protection Commission (APPPC) and the catalog of quarantine pests for plants imported to the People’s Republic of China. Based on 1781 global distribution records of H. zea and eight bioclimatic variables, the potential geographical distributions (PGDs) of H. zea were predicted by using a calibrated MaxEnt model. The contribution rate of bioclimatic variables and the jackknife method were integrated to assess the significant variables governing the PGDs. The response curves of bioclimatic variables were quantitatively determined to predict the PGDs of H. zea under climate change. The results showed that: (1) four out of the eight variables contributed the most to the model performance, namely, mean diurnal range (bio2), precipitation seasonality (bio15), precipitation of the driest quarter (bio17) and precipitation of the warmest quarter (bio18); (2) PGDs of H. zea under the current climate covered 418.15 × 104 km2, and were large in China; and (3) future climate change will facilitate the expansion of PGDs for H. zea under shared socioeconomic pathways (SSP) 1-2.6, SSP2-4.5, and SSP5-8.5 in both the 2030s and 2050s. The conversion of unsuitable to low suitability habitat and moderately to high suitability habitat increased by 8.43% and 2.35%, respectively. From the present day to the 2030s, under SSP1-2.6, SSP2-4.5 and SSP5-8.5, the centroid of the suitable habitats of H. zea showed a general tendency to move eastward; from 2030s to the 2050s, under SSP1-2.6 and SSP5-8.5, it moved southward, and it moved slightly northward under SSP2-4.5. According to bioclimatic conditions, H. zea has a high capacity for colonization by introduced individuals in China. Customs ports should pay attention to host plants and containers of H. zea and should exchange information to strengthen plant quarantine and pest monitoring, thus enhancing target management.


2022 ◽  
Vol 67 (1) ◽  
pp. 387-406
Author(s):  
T.K. Walsh ◽  
D.G. Heckel ◽  
Yidong Wu ◽  
S. Downes ◽  
K.H.J. Gordon ◽  
...  

It is increasingly clear that pest species vary widely in their propensities to develop insecticide resistance. This review uses a comparative approach to analyze the key pest management practices and ecological and biochemical or genetic characteristics of the target that contribute to this variation. We focus on six heliothine species, three of which, Helicoverpa armigera, Heliothis virescens, and Helicoverpa zea, have developed resistances to many pesticide classes. The three others, Helicoverpa punctigera, Helicoverpa assulta, and Helicoverpa gelotopoeon, also significant pests, have developed resistance to very few pesticide classes. We find that host range and movement between alternate hosts are key ecological traits that influence effective selection intensities for resistance. Operational issues are also critical; area-wide, cross-pesticide management practices that account for these ecological factors are key to reducing selection intensity. Without such management, treatment using broad-spectrum chemicals serves to multiply the effects of host plant preference, preadaptive detoxification ability, and high genetic diversity to create a pesticide treadmill for the three high-propensity species.Without rigorous ongoing management, such a treadmill could still develop for newer, more selective chemistries and insecticidal transgenic crops.


Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 12
Author(s):  
Roger D. Lawrie ◽  
Robert D. Mitchell ◽  
Jean Marcel Deguenon ◽  
Loganathan Ponnusamy ◽  
Dominic Reisig ◽  
...  

Multiple insect pest species have developed field resistance to Bt-transgenic crops. There has been a significant amount of research on protein-coding genes that contribute to resistance, such as the up-regulation of protease activity or altered receptors. However, our understanding of the role of non-protein-coding mechanisms in Bt-resistance is minimal, as is also the case for resistance to chemical pesticides. To address this problem relative to Bt, RNA-seq was used to examine statistically significant, differential gene expression between a Cry1Ac-resistant (~100-fold resistant) and Cry1Ac-susceptible strain of Helicoverpa zea, a prevalent caterpillar pest in the USA. Significant differential expression of putative long non-coding RNAs (lncRNAs) was found in the Cry1Ac-resistant strain (58 up- and 24 down-regulated gene transcripts with an additional 10 found only in resistant and four only in susceptible caterpillars). These lncRNAs were examined as potential pseudogenes and for their genomic proximity to coding genes, both of which can be indicative of regulatory relationships between a lncRNA and coding gene expression. A possible pseudogenic lncRNA was found with similarities to a cadherin. In addition, putative lncRNAs were found significantly proximal to a serine protease, ABC transporter, and CYP coding genes, potentially involved in the mechanism of Bt and/or chemical insecticide resistance. Characterization of non-coding genetic mechanisms in Helicoverpa zea will improve the understanding of the genomic evolution of insect resistance, improve the identification of specific regulators of coding genes in general (some of which could be important in resistance), and is the first step for potentially targeting these regulators for pest control and resistance management (using molecular approaches, such as RNAi and others).


2021 ◽  
Vol 118 (52) ◽  
pp. e2020853118
Author(s):  
Katherine L. Taylor ◽  
Kelly A. Hamby ◽  
Alexandra M. DeYonke ◽  
Fred Gould ◽  
Megan L. Fritz

Replacing synthetic insecticides with transgenic crops for pest management has been economically and environmentally beneficial, but these benefits erode as pests evolve resistance. It has been proposed that novel genomic approaches could track molecular signals of emerging resistance to aid in resistance management. To test this, we quantified patterns of genomic change in Helicoverpa zea, a major lepidopteran pest and target of transgenic Bacillus thuringiensis (Bt) crops, between 2002 and 2017 as both Bt crop adoption and resistance increased in North America. Genomic scans of wild H. zea were paired with quantitative trait locus (QTL) analyses and showed the genomic architecture of field-evolved Cry1Ab resistance was polygenic, likely arising from standing genetic variation. Resistance to pyramided Cry1A.105 and Cry2Ab2 toxins was controlled by fewer loci. Of the 11 previously described Bt resistance genes, 9 showed no significant change over time or major effects on resistance. We were unable to rule out a contribution of aminopeptidases (apns), as a cluster of apn genes were found within a Cry-associated QTL. Molecular signals of emerging Bt resistance were detectable as early as 2012 in our samples, and we discuss the potential and pitfalls of whole-genome analysis for resistance monitoring based on our findings. This first study of Bt resistance evolution using whole-genome analysis of field-collected specimens demonstrates the need for a more holistic approach to examining rapid adaptation to novel selection pressures in agricultural ecosystems.


2021 ◽  
Vol 322 ◽  
pp. 107642
Author(s):  
Seth J. Dorman ◽  
Kristen A. Hopperstad ◽  
Brian J. Reich ◽  
George Kennedy ◽  
Anders S. Huseth
Keyword(s):  

2021 ◽  
Author(s):  
Kyle M Benowitz ◽  
Carson W Allan ◽  
Benjamin A Degain ◽  
Xianchun Li ◽  
Jeffrey A Fabrick ◽  
...  

Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have advanced pest management, but their benefits are diminished when pests evolve resistance. Elucidating the genetic basis of pest resistance to Bt toxins can improve resistance monitoring, resistance management, and design of new insecticides. Here, we investigated the genetic basis of resistance to Bt toxin Cry1Ac in the lepidopteran Helicoverpa zea, one of the most damaging crop pests in the United States. To facilitate this research, we built the first chromosome-level genome assembly for this species. Using a genome-wide association study, fine-scale mapping, and RNA-seq, we identified a 250kb QTL on chromosome 13 that was strongly associated with resistance in a strain of H. zea that had been selected for resistance in the field and lab. This QTL contains no genes with a previously reported role in resistance or susceptibility to Bt toxins. However, within this QTL, we discovered a premature stop codon in a kinesin gene. We hypothesize that this mutation contributes to resistance. The results indicate the mutation on chromosome 13 was necessary but not sufficient for resistance, and therefore conclude that mutations in more than one gene contributed to resistance. Moreover, we found no changes in gene sequence or expression consistently associated with resistance for 11 genes previously implicated in lepidopteran resistance to Cry1Ac. Thus, the results reveal a novel and polygenic basis of resistance and extend the list of genes contributing to pest resistance to Bt toxins.


2021 ◽  
Author(s):  
Danielly A M Rios ◽  
Alexandre Specht ◽  
Vânia F Roque‐Specht ◽  
Daniel R Sosa‐Gómez ◽  
Júlia Fochezato ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 940
Author(s):  
Olufemi S. Ajayi ◽  
Michelle Samuel-Foo

There has been a resurgence in the cultivation of industrial hemp, Cannabis sativa L., in the United States since its recent legalization. This may facilitate increased populations of arthropods associated with the plant. Hemp pests target highly marketable parts of the plant, such as flowers, stalks, and leaves, which ultimately results in a decline in the quality. Industrial hemp can be used for several purposes including production of fiber, grain, and cannabidiol. Thus, proper management of pests is essential to achieve a substantial yield of hemp in the face of climate change. In this review, we provide updates on various arthropods associated with industrial hemp in the United States and examine the potential impact of climate change on corn earworm (CEW) Helicoverpa zea Boddie, a major hemp pest. For example, temperature and photoperiod affect the development and diapause process in CEW. Additionally, drought can lead to a reduction in hemp growth. Host plant diversity of CEW may prevent populations of the pest from reaching outbreak levels. It is suggested that hemp varieties resistant to drought, high soil salinity, cold, heat, humidity, and common pests and diseases should be selected. Ongoing research on effective management of CEW in hemp is critical.


Author(s):  
Wilfrid Calvin ◽  
Fei Yang ◽  
Sebe A Brown ◽  
Angus L Catchot ◽  
Whitney D Crow ◽  
...  

Abstract Widespread field-evolved resistance of bollworm [Helicoverpa zea (Boddie)] to Cry1 and Cry2 Bt proteins has threatened the utility of Bt cotton for managing bollworm. Consequently, foliar insecticide applications have been widely adopted to provide necessary additional control. Field experiments were conducted across the Mid-South and in Texas to devise economic thresholds for foliar insecticide applications targeting bollworm in cotton. Bt cotton technologies including TwinLink (TL; Cry1Ab+Cry2Ae), TwinLink Plus (TLP; Cry1Ab+Cry2Ae+Vip3Aa), Bollgard II (BG2; Cry1Ac+Cry2Ab), Bollgard 3 (BG3; Cry1Ac+Cry2Ab+Vip3Aa), WideStrike (WS; Cry1Ac+Cry1F), WideStrike 3 (WS3; Cry1Ac+Cry1F+Vip3Aa), and a non-Bt (NBT) variety were evaluated. Gain threshold, economic injury level, and economic thresholds were determined. A 6% fruiting form injury threshold was selected and compared with preventive treatments utilizing chlorantraniliprole. Additionally, the differences in yield from spraying bollworms was compared among Bt cotton technologies. The 6% fruiting form injury threshold resulted in a 25 and 75% reduction in insecticide applications relative to preventive sprays for WS and BG2, respectively. All Bt technologies tested in the current study exhibited a positive increase in yield from insecticide application. The frequency of yield increase from spraying WS was comparable to that of NBT. Significant yield increases due to insecticide application occurred less frequently in triple-gene Bt cotton. However, their frequencies were close to the dual-gene Bt cotton, except for WS. The results of our study suggest that 6% fruiting form injury is a viable threshold, and incorporating a vetted economic threshold into an Integrated Pest Management program targeting bollworm should improve the sustainability of cotton production.


Sign in / Sign up

Export Citation Format

Share Document