scholarly journals Bacillus thuringiensis Cry1Ac Toxin-Binding and Pore-Forming Activity in Brush Border Membrane Vesicles Prepared from Anterior and Posterior Midgut Regions of Lepidopteran Larvae

2008 ◽  
Vol 74 (6) ◽  
pp. 1710-1716 ◽  
Author(s):  
Ana Rodrigo-Simón ◽  
Silvia Caccia ◽  
Juan Ferré

ABSTRACT It is generally accepted that Bacillus thuringiensis Cry toxins insert into the apical membrane of the larval midgut after binding to specific receptors, and there is evidence that the distribution of binding molecules along the midgut is not uniform. By use of the voltage-sensitive dye DiSC3(5) and 125I-labeled Cry1Ac, we have measured the effect of Cry1Ac in terms of permeabilization capacity and of binding parameters on brush border membrane vesicles (BBMV) prepared from the anterior and the posterior regions of the larval midgut from two insect species, Manduca sexta and Helicoverpa armigera. The permeabilizing activity was significantly higher with BBMV from the posterior region than with the one observed in the anterior region in both insect species. Instead, 125I-Cry1Ac bound specifically to BBMV from the two midgut regions, with no significant differences in the binding parameters between the anterior and posterior regions within an insect species. N-acetylgalactosamine inhibition patterns on pore formation and binding differed between anterior and posterior midgut regions and between species, providing evidence of a multifaceted involvement of the sugar in the Cry1Ac mode of action. The analysis of binding and pore formation in different midgut regions could be an effective method to study differences in the mode of action of Cry1Ac toxin in different species.

2007 ◽  
Vol 73 (11) ◽  
pp. 3623-3629 ◽  
Author(s):  
Jesko Oestergaard ◽  
Ralf-Udo Ehlers ◽  
Amparo C. Martínez-Ramírez ◽  
Maria Dolores Real

ABSTRACT Bacillus thuringiensis serovar israelensis (B. thuringiensis subsp. israelensis) produces four insecticidal crystal proteins (ICPs) (Cry4A, Cry4B, Cry11A, and Cyt1A). Toxicity of recombinant B. thuringiensis subsp. israelensis strains expressing only one of the toxins was determined with first instars of Tipula paludosa (Diptera: Nematocera). Cyt1A was the most toxic protein, whereas Cry4A, Cry4B, and Cry11A were virtually nontoxic. Synergistic effects were recorded when Cry4A and/or Cry4B was combined with Cyt1A but not with Cry11A. The binding and pore formation are key steps in the mode of action of B. thuringiensis subsp. israelensis ICPs. Binding and pore-forming activity of Cry11Aa, which is the most toxic protein against mosquitoes, and Cyt1Aa to brush border membrane vesicles (BBMVs) of T. paludosa were analyzed. Solubilization of Cry11Aa resulted in two fragments, with apparent molecular masses of 32 and 36 kDa. No binding of the 36-kDa fragment to T. paludosa BBMVs was detected, whereas the 32-kDa fragment bound to T. paludosa BBMVs. Only a partial reduction of binding of this fragment was observed in competition experiments, indicating a low specificity of the binding. In contrast to results for mosquitoes, the Cyt1Aa protein bound specifically to the BBMVs of T. paludosa, suggesting an insecticidal mechanism based on a receptor-mediated action, as described for Cry proteins. Cry11Aa and Cyt1Aa toxins were both able to produce pores in T. paludosa BBMVs. Protease treatment with trypsin and proteinase K, previously reported to activate Cry11Aa and Cyt1Aa toxins, respectively, had the opposite effect. A higher efficiency in pore formation was observed when Cyt1A was proteinase K treated, while the activity of trypsin-treated Cry11Aa was reduced. Results on binding and pore formation are consistent with results on ICP toxicity and synergistic effect with Cyt1Aa in T. paludosa.


1997 ◽  
Vol 110 (24) ◽  
pp. 3099-3104
Author(s):  
J. Carroll ◽  
M.G. Wolfersberger ◽  
D.J. Ellar

Aminopeptidase N purified from whole Manduca sexta midgut binds the Cry1Ac insecticidal toxin from Bacillus thuringiensis and this binding is inhibited by N-acetylgalactosamine (GalNAc). We have examined the membrane permeabilising activity of the Cry1Ac toxin using brush border membrane vesicles (BBMV) prepared from the anterior (A-BBMV) and posterior (P-BBMV) subregions of the M. sexta midgut. A toxin mixing assay demonstrated a faster rate of toxin activity on P-BBMV than on A-BBMV. In the presence of GalNAc this rapid activity on P-BBMV was reduced to the rate seen with A-BBMV. GalNAc had no effect on the rate of A-BBMV permeabilisation by Cry1Ac. Aminopeptidase N assays of A- and P-BBMV demonstrated that this Cry1Ac binding protein is concentrated in the posterior midgut region of M. sexta. It therefore appears that there are two mechanisms by which Cry1Ac permeabilises the M. sexta midgut membrane: a GalNAc-sensitive mechanism restricted to the posterior midgut region, probably involving aminopeptidase N binding, and a previously undetected mechanism found in both the posterior and anterior regions.


2009 ◽  
Vol 75 (12) ◽  
pp. 3842-3850 ◽  
Author(s):  
Geneviève Lebel ◽  
Vincent Vachon ◽  
Gabrielle Préfontaine ◽  
Frédéric Girard ◽  
Luke Masson ◽  
...  

ABSTRACT Pore formation in the apical membrane of the midgut epithelial cells of susceptible insects constitutes a key step in the mode of action of Bacillus thuringiensis insecticidal toxins. In order to study the mechanism of toxin insertion into the membrane, at least one residue in each of the pore-forming-domain (domain I) interhelical loops of Cry1Aa was replaced individually by cysteine, an amino acid which is normally absent from the activated Cry1Aa toxin, using site-directed mutagenesis. The toxicity of most mutants to Manduca sexta neonate larvae was comparable to that of Cry1Aa. The ability of each of the activated mutant toxins to permeabilize M. sexta midgut brush border membrane vesicles was examined with an osmotic swelling assay. Following a 1-h preincubation, all mutants except the V150C mutant were able to form pores at pH 7.5, although the W182C mutant had a weaker activity than the other toxins. Increasing the pH to 10.5, a procedure which introduces a negative charge on the thiol group of the cysteine residues, caused a significant reduction in the pore-forming abilities of most mutants without affecting those of Cry1Aa or the I88C, T122C, Y153C, or S252C mutant. The rate of pore formation was significantly lower for the F50C, Q151C, Y153C, W182C, and S252C mutants than for Cry1Aa at pH 7.5. At the higher pH, all mutants formed pores significantly more slowly than Cry1Aa, except the I88C mutant, which formed pores significantly faster, and the T122C mutant. These results indicate that domain I interhelical loop residues play an important role in the conformational changes leading to toxin insertion and pore formation.


2006 ◽  
Vol 72 (1) ◽  
pp. 506-515 ◽  
Author(s):  
Martin Kirouac ◽  
Vincent Vachon ◽  
Delphine Quievy ◽  
Jean-Louis Schwartz ◽  
Raynald Laprade

ABSTRACT To investigate whether membrane proteases are involved in the activity of Bacillus thuringiensis insecticidal toxins, the rate of pore formation by trypsin-activated Cry1Aa was monitored in the presence of a variety of protease inhibitors with Manduca sexta midgut brush border membrane vesicles and by a light-scattering assay. Most of the inhibitors tested had no effect on the pore-forming ability of the toxin. However, phenylmethylsulfonyl fluoride, a serine protease inhibitor, promoted pore formation, although this stimulation only occurred at higher inhibitor concentrations than those commonly used to inhibit proteases. Among the metalloprotease inhibitors, o-phenanthroline had no significant effect; EDTA and EGTA reduced the rate of pore formation at pH 10.5, but only EDTA was inhibitory at pH 7.5. Neither chelator affected the properties of the pores already formed after incubation of the vesicles with the toxin. Taken together, these results indicate that, once activated, Cry1Aa is completely functional and does not require further proteolysis. The effect of EDTA and EGTA is probably better explained by their ability to chelate divalent cations that could be necessary for the stability of the toxin's receptors or involved elsewhere in the mechanism of pore formation.


2002 ◽  
Vol 68 (11) ◽  
pp. 5711-5717 ◽  
Author(s):  
Juan Luis Jurat-Fuentes ◽  
Fred L. Gould ◽  
Michael J. Adang

ABSTRACT The binding and pore formation abilities of Cry1A and Cry1Fa Bacillus thuringiensis toxins were analyzed by using brush border membrane vesicles (BBMV) prepared from sensitive (YDK) and resistant (YHD2) strains of Heliothis virescens. 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac toxins did not bind to BBMV from the resistant YHD2 strain, while specific binding to sensitive YDK vesicles was observed. Binding assays revealed a reduction in Cry1Fa binding to BBMV from resistant larvae compared to Cry1Fa binding to BBMV from sensitive larvae. In agreement with this reduction in binding, neither Cry1A nor Cry1Fa toxin altered the permeability of membrane vesicles from resistant larvae, as measured by a light-scattering assay. Ligand blotting experiments performed with BBMV and 125I-Cry1Ac did not differentiate sensitive larvae from resistant larvae. Iodination of BBMV surface proteins suggested that putative toxin-binding proteins were exposed on the surface of the BBMV from resistant insects. BBMV protein blots probed with the N-acetylgalactosamine-specific lectin soybean agglutinin (SBA) revealed altered glycosylation of 63- and 68-kDa glycoproteins but not altered glycosylation of known Cry1 toxin-binding proteins in YHD2 BBMV. The F1 progeny of crosses between sensitive and resistant insects were similar to the sensitive strain when they were tested by toxin-binding assays, light-scattering assays, and lectin blotting with SBA. These results are evidence that a dramatic reduction in toxin binding is responsible for the increased resistance and cross-resistance to Cry1 toxins observed in the YHD2 strain of H. virescens and that this trait correlates with altered glycosylation of specific brush border membrane glycoproteins.


2010 ◽  
Vol 1798 (6) ◽  
pp. 1111-1118 ◽  
Author(s):  
Jean-Frédéric Brunet ◽  
Vincent Vachon ◽  
Marc Juteau ◽  
Jeroen Van Rie ◽  
Geneviève Larouche ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document