scholarly journals Development and Characterization of Stable Sediment-Free Anaerobic Bacterial Enrichment Cultures That Dechlorinate Aroclor 1260

2006 ◽  
Vol 72 (4) ◽  
pp. 2460-2470 ◽  
Author(s):  
Donna L. Bedard ◽  
Jessica J. Bailey ◽  
Brandon L. Reiss ◽  
Greta Van Slyke Jerzak

ABSTRACT We have developed sediment-free anaerobic enrichment cultures that dechlorinate a broad spectrum of highly chlorinated polychlorinated biphenyls (PCBs). The cultures were developed from Aroclor 1260-contaminated sediment from the Housatonic River in Lenox, MA. Sediment slurries were primed with 2,6-dibromobiphenyl to stimulate Process N dechlorination (primarily meta dechlorination), and sediment was gradually removed by successive transfers (10%) to minimal medium. The cultures grow on pyruvate, butyrate, or acetate plus H2. Gas chromatography-electron capture detector analysis demonstrated that the cultures extensively dechlorinate 50 to 500 μg/ml of Aroclor 1260 at 22 to 24°C by Dechlorination Process N. Triplicate cultures of the eighth transfer without sediment dechlorinated 76% of the hexa- through nonachlorobiphenyls in Aroclor 1260 (250 μg/ml) to tri- through pentachlorobiphenyls in 110 days. At least 64 PCB congeners, all of which are chlorinated on both rings and 47 of which have six or more chlorines, were substrates for this dechlorination. To characterize the bacterial diversity in the enrichments, we used eubacterial primers to amplify and clone 16S rRNA genes from DNA extracted from cultures grown on acetate plus H2. Restriction fragment length polymorphism analysis of 107 clones demonstrated the presence of Thauera-like Betaproteobacteria, Geobacter-like Deltaproteobacteria, Pseudomonas species, various Clostridiales, Bacteroidetes, Dehalococcoides of the Chloroflexi group, and unclassified Eubacteria. Our development of highly enriched, robust, stable, sediment-free cultures that extensively dechlorinate a highly chlorinated commercial PCB mixture is a major and unprecedented breakthrough in the field. It will enable intensive study of the organisms and genes responsible for a major PCB dechlorination process that occurs in the environment and could also lead to effective remediation applications.

2002 ◽  
Vol 68 (5) ◽  
pp. 2261-2268 ◽  
Author(s):  
Birgit Reiter ◽  
Ulrike Pfeifer ◽  
Helmut Schwab ◽  
Angela Sessitsch

ABSTRACT The term endophyte refers to interior colonization of plants by microorganisms that do not have pathogenic effects on their hosts, and various endophytes have been found to play important roles in plant vitality. In this study, cultivation-independent terminal restriction fragment length polymorphism analysis of 16S ribosomal DNA directly amplified from plant tissue DNA was used in combination with molecular characterization of isolates to examine the influence of plant stress, achieved by infection with the blackleg pathogen Erwinia carotovora subsp. atroseptica, on the endophytic population in two different potato varieties. Community analysis clearly demonstrated increased bacterial diversity in infected plants compared to that in control plants. The results also indicated that the pathogen stress had a greater impact on the bacteria population than the plant genotype had. Partial sequencing of the 16S rRNA genes of isolated endophytes revealed a broad phylogenetic spectrum of bacteria, including members of the α, β, and γ subgroups of the Proteobacteria, high- and low-G+C-content gram-positive organisms, and microbes belonging to the Flexibacter-Cytophaga-Bacteroides group. Screening of the isolates for antagonistic activity against E. carotovora subsp. atroseptica revealed that 38% of the endophytes protected tissue culture plants from blackleg disease.


Sign in / Sign up

Export Citation Format

Share Document