scholarly journals Complete Genome Sequence of Soil Fungus Aspergillus terreus (KM017963), a Potent Lovastatin Producer

2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Janakiraman Savitha ◽  
S. D. Bhargavi ◽  
V. K. Praveen

We report the complete genome of Aspergillus terreus (KM017963), a tropical soil isolate. The genome sequence is 29 Mb, with a G+C content of 51.12%. The genome sequence of A. terreus shows the presence of the complete gene cluster responsible for lovastatin (an anti-cholesterol drug) production in a single scaffold (1.16).

2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Yuxin Xu ◽  
Man Yu ◽  
Alin Shen

Rhodococcus sp. WB1 is a polychlorinated biphenyl degrader which was isolated from contaminated soil in Zhejiang, China. Here, we present the complete genome sequence. The analysis of this genome indicated that a biphenyl-degrading gene cluster and several xenobiotic metabolism pathways are harbored.


2019 ◽  
Vol 11 (12) ◽  
pp. 3529-3533
Author(s):  
Pavelas Sazinas ◽  
Morten Lindqvist Hansen ◽  
May Iren Aune ◽  
Marie Højmark Fischer ◽  
Lars Jelsbak

Abstract Many of the soil-dwelling Pseudomonas species are known to produce secondary metabolite compounds, which can have antagonistic activity against other microorganisms, including important plant pathogens. It is thus of importance to isolate new strains of Pseudomonas and discover novel or rare gene clusters encoding bioactive products. In an effort to accomplish this, we have isolated a bioactive Pseudomonas strain DTU12.1 from leaf-covered soil in Denmark. Following genome sequencing with Illumina and Oxford Nanopore technologies, we generated a complete genome sequence with the length of 5,943,629 base pairs. The DTU12.1 strain contained a complete gene cluster for a rare thioquinolobactin siderophore, which was previously described as possessing bioactivity against oomycetes and several fungal species. We placed the DTU12.1 strain within Pseudomonas gessardii subgroup of fluorescent pseudomonads, where it formed a distinct clade with other Pseudomonas strains, most of which also contained a complete thioquinolobactin gene cluster. Only two other Pseudomonas strains were found to contain the gene cluster, though they were present in a different phylogenetic clade and were missing a transcriptional regulator of the whole cluster. We show that having the complete genome sequence and establishing phylogenetic relationships with other strains can enable us to start evaluating the distribution and evolutionary origins of secondary metabolite clusters.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Julia A. Bockwoldt ◽  
Martin Zimmermann ◽  
Till Tiso ◽  
Lars M. Blank

Paracoccus spp. are metabolically versatile alphaproteobacteria able to perform heterotrophic and chemoautotrophic growth. This study describes the whole-genome sequence of the Paracoccus pantotrophus type strain DSM 2944 (ATCC 35512, LMD 82.5, GB17). The genome sequence revealed the presence of a complete phaZ phaC phaP phaR gene cluster related to polyhydroxyalkanoate metabolism.


Author(s):  
John M. Sutton ◽  
Timothy J. Bushman ◽  
Denise M. Akob ◽  
Janna L. Fierst

We report the genome of Rhodococcus opacus strain MoAcy1 ( DSM 44186 ), an aerobic soil isolate capable of using acetylene as its primary carbon and energy source (acetylenotrophy). The genome is composed of a single circular chromosome of ∼8 Mbp and two closed plasmids, with a G+C content of 67.3%.


2019 ◽  
Vol 8 (28) ◽  
Author(s):  
Felipe Vejarano ◽  
Chiho Suzuki-Minakuchi ◽  
Yoshiyuki Ohtsubo ◽  
Masataka Tsuda ◽  
Kazunori Okada ◽  
...  

We determined the complete genome sequence of Thalassococcus sp. strain S3, a marine carbazole degrader isolated from Tokyo Bay in Japan that carries genes for aerobic anoxygenic phototrophy. Strain S3 has a 4.7-Mb chromosome that harbors the carbazole-degradative gene cluster and three (96-, 63-, and 46-kb) plasmids.


2015 ◽  
Vol 3 (5) ◽  
Author(s):  
Dieval Guizelini ◽  
Paula M. Saizaki ◽  
Nilson A. R. Coimbra ◽  
Vinicius A. Weiss ◽  
Helisson Faoro ◽  
...  

We report the complete genome sequence of Herbaspirillum hiltneri N3 (DSM 17495), a member of the genus Herbaspirillum of the Betaproteobacteria . The genome is contained in a single chromosome, and analysis revealed that N3 lacks the whole nitrogen fixation ( nif ) gene cluster, confirming its inability to fix nitrogen.


2016 ◽  
Vol 4 (3) ◽  
Author(s):  
J. Savitha ◽  
S. D. Bhargavi ◽  
V. K. Praveen

Diaporthe ampelina was isolated as an endophytic fungus from the root of Commiphora wightii, a medicinal plant collected from Dhanvantri Vana, Bangalore University, Bangalore, India . The whole genome is 59 Mb, contains a total of 905 scaffolds, and has a G+C content of 51.74%. The genome sequence of D. ampelina shows a complete absence of lovastatin (an anticholesterol drug) gene cluster.


2021 ◽  
Vol 10 (40) ◽  
Author(s):  
Luis B. Gómez-Luciano ◽  
Yu-Wei Wu ◽  
Chien-Min Chiang ◽  
Te-Sheng Chang ◽  
Jiumn-Yih Wu ◽  
...  

The soil bacterium Psychrobacillus sp. strain AK 1817 was isolated from a tropical soil sample collected in Taiwan. Strain AK 1817 biotransforms the ergostane triterpenoid antcin K from the fungus Antrodia cinnamomea . The genome was sequenced using the PacBio RS II platform and consists of one chromosome of 4,096,020 bp, comprising 3,907 protein-coding genes, 75 tRNAs, 30 rRNAs, 5 noncoding RNAs (ncRNAs), and 100 pseudogenes.


Sign in / Sign up

Export Citation Format

Share Document