scholarly journals Antigenic variation in clones of Trypanosoma brucei grown in immune-deficient mice.

1985 ◽  
Vol 47 (3) ◽  
pp. 684-690 ◽  
Author(s):  
P J Myler ◽  
A L Allen ◽  
N Agabian ◽  
K Stuart
2019 ◽  
Vol 116 (45) ◽  
pp. 22774-22782 ◽  
Author(s):  
Kirsty R. McWilliam ◽  
Alasdair Ivens ◽  
Liam J. Morrison ◽  
Monica R. Mugnier ◽  
Keith R. Matthews

African trypanosomes use an extreme form of antigenic variation to evade host immunity, involving the switching of expressed variant surface glycoproteins by a stochastic and parasite-intrinsic process. Parasite development in the mammalian host is another feature of the infection dynamic, with trypanosomes undergoing quorum sensing (QS)-dependent differentiation between proliferative slender forms and arrested, transmissible, stumpy forms. Longstanding experimental studies have suggested that the frequency of antigenic variation and transmissibility may be linked, antigen switching being higher in developmentally competent, fly-transmissible, parasites (“pleomorphs”) than in serially passaged “monomorphic” lines that cannot transmit through flies. Here, we have directly tested this tenet of the infection dynamic by using 2 experimental systems to reduce pleomorphism. Firstly, lines were generated that inducibly lose developmental capacity through RNAi-mediated silencing of the QS signaling machinery (“inducible monomorphs”). Secondly, de novo lines were derived that have lost the capacity for stumpy formation by serial passage (“selected monomorphs”) and analyzed for their antigenic variation in comparison to isogenic preselected populations. Analysis of both inducible and selected monomorphs has established that antigen switch frequency and developmental capacity are independently selected traits. This generates the potential for diverse infection dynamics in different parasite populations where the rate of antigenic switching and transmission competence are uncoupled. Further, this may support the evolution, maintenance, and spread of important trypanosome variants such as Trypanosoma brucei evansi that exploit mechanical transmission.


2007 ◽  
Vol 6 (10) ◽  
pp. 1773-1781 ◽  
Author(s):  
Peter Burton ◽  
David J. McBride ◽  
Jonathan M. Wilkes ◽  
J. David Barry ◽  
Richard McCulloch

ABSTRACT DNA double-strand breaks (DSBs) are repaired primarily by two distinct pathways: homologous recombination and nonhomologous end joining (NHEJ). NHEJ has been found in all eukaryotes examined to date and has been described recently for some bacterial species, illustrating its ancestry. Trypanosoma brucei is a divergent eukaryotic protist that evades host immunity by antigenic variation, a process in which homologous recombination plays a crucial function. While homologous recombination has been examined in some detail in T. brucei, little work has been done to examine what other DSB repair pathways the parasite utilizes. Here we show that T. brucei cell extracts support the end joining of linear DNA molecules. These reactions are independent of the Ku heterodimer, indicating that they are distinct from NHEJ, and are guided by sequence microhomology. We also demonstrate bioinformatically that T. brucei, in common with other kinetoplastids, does not encode recognizable homologues of DNA ligase IV or XRCC4, suggesting that NHEJ is either absent or mechanistically diverged in these pathogens.


Open Biology ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 190182 ◽  
Author(s):  
Núria Sima ◽  
Emilia Jane McLaughlin ◽  
Sebastian Hutchinson ◽  
Lucy Glover

African trypanosomes escape the mammalian immune response by antigenic variation—the periodic exchange of one surface coat protein, in Trypanosoma brucei the variant surface glycoprotein (VSG), for an immunologically distinct one. VSG transcription is monoallelic, with only one VSG being expressed at a time from a specialized locus, known as an expression site. VSG switching is a predominantly recombination-driven process that allows VSG sequences to be recombined into the active expression site either replacing the currently active VSG or generating a ‘new’ VSG by segmental gene conversion. In this review, we describe what is known about the factors that influence this process, focusing specifically on DNA repair and recombination.


1991 ◽  
Vol 11 (8) ◽  
pp. 3823-3834 ◽  
Author(s):  
M Weiden ◽  
Y N Osheim ◽  
A L Beyer ◽  
L H Van der Ploeg

The genome of the protozoan Trypanosoma brucei contains a set of about 100 minichromosomes of about 50 to 150 kb in size. The small size of these chromosomes, their involvement in antigenic variation, and their mitotic stability make them ideal candidates for a structural analysis of protozoan chromosomes and their telomeres. We show that a subset of the minichromosomes is composed predominantly of simple-sequence DNA, with over 90% of the length of the minichromosome consisting of a tandem array of 177-bp repeats, indicating that these molecules have limited protein-coding capacity. Proceeding from the tip of the telomere to a chromosome internal position, a subset of the minichromosomes contained the GGGTTA telomere repeat, a 29-bp telomere-derived repeat, a region containing 74-bp G + C-rich direct repeats separated by approximately 155 bp of A + T-rich DNA that has a bent character, and 50 to 150 kb of the 177-bp repeat. Several of the minichromosome-derived telomeres did not encode protein-coding genes, indicating that the repertoire of telomeric variant cell surface glycoprotein genes is restricted to some telomeres only. The telomere organization in trypanosomes shares striking similarities to the organization of telomeres and subtelomeres in humans, yeasts, and plasmodia. An electron microscopic analysis of the minichromosomes showed that they are linear molecules without abnormal structures in the main body of the chromosome. The structure of replicating molecules indicated that minichromosomes probably have a single bidirectional origin of replication located in the body of the chromosome. We propose a model for the structure of the trypanosome minichromosomes.


Parasitology ◽  
1989 ◽  
Vol 99 (S1) ◽  
pp. S37-S47 ◽  
Author(s):  
K. Vickerman

SUMMARYSurvival of the trypanosome (Trypanosoma brucei) population in the mammalian body depends upon paced stimulation of the host's humoral immune response by different antigenic variants and serial sacrifice of the dominant variant (homotype) so that minority variants (heterotypes) can continue the infection and each become a homotype in its turn. New variants are generated by a spontaneous switch in gene expression so that the trypanosome puts on a surface coat of a glycoprotein differing in antigenic specificity from its predecessor. Homotypes appear in a characteristic order for a given trypanosome clone but what determines this order and the pacing of homotype generation so that the trypanosome does not quickly exhaust its repertoire of variable antigens, is not clear. The tendency of some genes to be expressed more frequently than others may reflect the location within the genome and mode of expression of the genes concerned and may influence homotype succession. Differences in the doubling time of different variants or in the rate at which trypanosomes belonging to a particular variant differentiate into non-dividing (vector infective) stumpy forms have also been invoked to explain how a heterotype's growth characteristics may determine when it becomes a homotype. Recent estimations of the frequency of variable antigen switching in trypanosome populations after transmission through the tsetse fly vector, however, suggest a much higher figure (0·97–2·2 × 10−3switches per cell per generation) than that obtained for syringe-passed infections (10−5–10−7switches per cell per generation) and it seems probable that most of the variable antigen genes are expressed as minority variable antigen types very early in the infection. Instability of expression is a feature of trypanosome clones derived from infective tsetse salivary gland (metacyclic) trypanosomes and it is suggested that high switching rates in tsetse-transmitted infections may delay the growth of certain variants to homotype status until later in the infection.


Author(s):  
Gonzalo Ballon-Landa ◽  
Herndon Douglas ◽  
M.E.M. Colmerauer ◽  
Donna Goddard ◽  
Charles E. Davis

2021 ◽  
Author(s):  
Hee-Sook Kim

In Trypanosoma brucei, genes assemble into polycistronic transcription units (PTUs). Transcription termination sites (TTSs) hold deposition sites for three non-essential chromatin factors, histone variants (H3v and H4v) and a DNA modification (base J, a hydroxyl-glucosyl dT). Here, I found that H4v is a major sign for transcription termination at TTSs and readthrough transcription machineries progress until they encounter the next bidirectional transcription start site. While having a secondary function at TTSs, H3v is important for monoallelic transcription of telomeric antigen genes. The simultaneous absence of both histone variants leads to proliferation and replication defects, which are exacerbated by the J deficiency, accompanied by accumulation of sub-G1 population. Base J likely contributes to DNA replication and cell-cycle control. I propose that the coordinated actions of H3v, H4v and J function in concert for cellular fate determination and provide compensatory mechanisms for each other in chromatin organization, transcription, and replication.


Sign in / Sign up

Export Citation Format

Share Document