polycistronic transcription
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 9)

H-INDEX

22
(FIVE YEARS 2)

Cell Reports ◽  
2022 ◽  
Vol 38 (2) ◽  
pp. 110221
Author(s):  
Carlos Cordon-Obras ◽  
Claudia Gomez-Liñan ◽  
Sara Torres-Rusillo ◽  
Isabel Vidal-Cobo ◽  
Diana Lopez-Farfan ◽  
...  

Author(s):  
Hee-Sook Kim

In Trypanosoma brucei, genes are assembled in polycistronic transcription units (PTUs). Boundaries of PTUs are designated transcription start sites and transcription termination sites (TTSs). Messenger RNAs are generated by trans-splicing and polyadenylation of precursor RNAs, and regulatory information in the 3′ un-translated region (UTR), rather than promoter activity/sequence-specific transcription factors, controls mRNA levels. Given this peculiar genome structure, special strategies must be utilized to control transcription in T. brucei. TTSs are deposition sites for three non-essential chromatin factors—two of non-canonical histone variants (H3v and H4v) and a DNA modification (base J, which is a hydroxyl-glucosyl dT). This association generated the hypothesis that these three chromatin marks define a transcription termination site in T. brucei. Using a panel of null mutants lacking H3v, H4v, and base J, here I show that H4v is a major sign for transcription termination at TTSs. While having a secondary function at TTSs, H3v is important for monoallelic transcription of telomeric antigen genes. The simultaneous absence of both histone variants leads to proliferation and replication defects, which are exacerbated by the J absence, accompanied by accumulation of sub-G1 population. Thus, I propose that the coordinated actions of H3v, H4v, and J provide compensatory mechanisms for each other in chromatin organization, transcription, replication, and cell-cycle progression.


2021 ◽  
Author(s):  
Hee-Sook Kim

In Trypanosoma brucei, genes assemble into polycistronic transcription units (PTUs). Transcription termination sites (TTSs) hold deposition sites for three non-essential chromatin factors, histone variants (H3v and H4v) and a DNA modification (base J, a hydroxyl-glucosyl dT). Here, I found that H4v is a major sign for transcription termination at TTSs and readthrough transcription machineries progress until they encounter the next bidirectional transcription start site. While having a secondary function at TTSs, H3v is important for monoallelic transcription of telomeric antigen genes. The simultaneous absence of both histone variants leads to proliferation and replication defects, which are exacerbated by the J deficiency, accompanied by accumulation of sub-G1 population. Base J likely contributes to DNA replication and cell-cycle control. I propose that the coordinated actions of H3v, H4v and J function in concert for cellular fate determination and provide compensatory mechanisms for each other in chromatin organization, transcription, and replication.


2021 ◽  
Author(s):  
Carlos Cordon-Obras ◽  
Claudia Gomez-Liñan ◽  
Sara Torres-Rusillo ◽  
Isabel Vidal-Cobo ◽  
Diana Lopez-Farfan ◽  
...  

Author(s):  
Marcus de Melo Teixeira ◽  
B. Franz Lang ◽  
Daniel R. Matute ◽  
Jason E. Stajich ◽  
Bridget Barker

AbstractFungal mitochondrial genomes encode for genes involved in crucial cellular processes, such as oxidative phosphorylation and mitochondrial translation, and these genes have been used as molecular markers for population genetics studies. Coccidioides immitis and C. posadasii are endemic fungal pathogens that cause coccidioidomycosis in arid regions across both American continents. To date, almost one hundred Coccidioides strains have been sequenced. The focus of these studies has been exclusively to infer patterns of variation of nuclear genomes (nucDNA). However, their mitochondrial genomes (mtDNA) have not been studied. In this report, we describe the assembly and annotation of mitochondrial reference genomes for two representative strains of C. posadasii and C. immitis, as well as assess population variation among 77 published genomes. The circular-mapping mtDNA molecules are 68.2 Kb in C. immitis and 75.1 Kb in C. posadasii. We identified the fourteen mitochondrial protein-coding genes common to most fungal mitochondria, including genes encoding the small and large ribosomal RNAs (rns and rnl), the RNA subunit of RNAse P (rnpB), and 26 tRNAs organized in polycistronic transcription units, which are mostly syntenic across different populations and species of Coccidioides. Both Coccidioides species are characterized by a large number of group I and II introns, harboring twice the number of elements as compared to closely related Onygenales. The introns contain complete or truncated ORFs with high similarity to homing endonucleases of the LAGLIDADG and GIY-YIG families. Phylogenetic comparison of the mtDNA and nucDNA genomes shows discordance, possibly due to differences in patterns of inheritance. In summary, this work represents the first complete assessment of mitochondrial genomes among several isolates of both species of Coccidioides, and provides a foundation for future functional work.


2020 ◽  
Author(s):  
Bryan C Jensen ◽  
Isabelle Q. Phan ◽  
Jacquelyn R. McDonald ◽  
Aakash Sur ◽  
Mark A. Gillespie ◽  
...  

AbstractUnlike most other eukaryotes, Leishmania and other trypanosomatid protozoa have largely eschewed transcriptional control of gene expression; relying instead on post-transcriptional regulation of mRNAs derived from polycistronic transcription units (PTUs). In these parasites, a novel modified nucleotide base (β-D-glucopyranosyloxymethyluracil) known as J plays a critical role in ensuring that transcription termination occurs only at the end of each PTU, rather than at the polyadenylation sites of individual genes. To further understand the biology of J-associated processes, we used tandem affinity purification (TAP-tagging) and mass spectrometry to reveal proteins that interact with the glucosyltransferase performing the final step in J synthesis. These studies identified four proteins reminiscent of subunits in the PTW/PP1 complex that controls transcription termination in higher eukaryotes. Moreover, bioinformatic analyses identified the DNA-binding subunit of Leishmania PTW/PP1 as a novel J-binding protein (JBP3). Down-regulation of JBP3 expression levels in Leishmania resulted in a substantial increase in transcriptional read-through at the 3’ end of most PTUs. Additional TAP-tagging experiments showed that JBP3 also associates with two other protein complexes. One consists of subunits with domains suggestive of a role in chromatin modification/remodeling; while the other contains subunits with similarity to those found in the PAF1 complex involved in regulation of transcription in other eukaryotes. Thus, trypanosomatids utilize protein complexes similar to those used to control transcription termination in other eukaryotes and JBP3 appears to function as a hub linking these modules to base J, thereby enabling the parasites’ unique reliance on polycistronic transcription and post-transcriptional regulation of gene expression.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marcelo S. da Silva ◽  
Gustavo R. Cayres-Silva ◽  
Marcela O. Vitarelli ◽  
Paula A. Marin ◽  
Priscila M. Hiraiwa ◽  
...  

AbstractThe co-synthesis of DNA and RNA potentially generates conflicts between replication and transcription, which can lead to genomic instability. In trypanosomatids, eukaryotic parasites that perform polycistronic transcription, this phenomenon and its consequences are still little studied. Here, we showed that the number of constitutive origins mapped in the Trypanosoma brucei genome is less than the minimum required to complete replication within S-phase duration. By the development of a mechanistic model of DNA replication considering replication-transcription conflicts and using immunofluorescence assays and DNA combing approaches, we demonstrated that the activation of non-constitutive (backup) origins are indispensable for replication to be completed within S-phase period. Together, our findings suggest that transcription activity during S phase generates R-loops, which contributes to the emergence of DNA lesions, leading to the firing of backup origins that help maintain robustness in S-phase duration. The usage of this increased pool of origins, contributing to the maintenance of DNA replication, seems to be of paramount importance for the survival of this parasite that affects million people around the world.


2019 ◽  
Author(s):  
Rudo Kieft ◽  
Yang Zhang ◽  
Alexandre P. Marand ◽  
Jose Dagoberto Moran ◽  
Robert Bridger ◽  
...  

AbstractBase J, β-D-glucosyl-hydroxymethyluracil, is a modification of thymine DNA base involved in RNA Polymerase (Pol) II transcription termination in kinetoplastid protozoa. Little is understood regarding how specific thymine residues are targeted for J-modification or the mechanism of J regulated transcription termination. To identify proteins involved in J-synthesis, we expressed a tagged version of the J-glucosyltransferase (JGT) in Leishmania tarentolae, and identified four co-purified proteins by mass spectrometry: protein phosphatase (PP1), a homolog of Wdr82, a potential PP1 regulatory protein (PNUTS) and a protein containing a J-DNA binding domain (named JBP3). Gel shift studies indicate JBP3 is a J-DNA binding protein. Reciprocal tagging, co-IP and sucrose gradient analyses indicate PP1, JGT, JBP3, Wdr82 and PNUTS form a multimeric complex in kinetoplastids, similar to the mammalian PTW/PP1 complex involved in transcription termination via PP1 mediated dephosphorylation of Pol II. Using RNAi and analysis of Pol II termination by RNA-seq and RT-PCR, we demonstrate that ablation of PNUTS, JBP3 and Wdr82 lead to defects in Pol II termination at the 3’-end of polycistronic gene arrays in Trypanosoma brucei. Mutants also contain increased antisense RNA levels upstream of promoters, suggesting an additional role of the complex in regulating termination of bi-directional transcription. In addition, PNUTS loss causes derepression of silent Variant Surface Glycoprotein genes important for host immune evasion. Our results provide the first direct mechanistic link between base J and regulation of Pol II termination and suggest a novel molecular model for the role of the CTD of Pol II in terminating polycistronic transcription in trypanosomatids.Author SummaryTrypanosoma brucei is an early-diverged parasitic protozoan that causes African sleeping sickness in humans. The genome of T. brucei is organized into polycistronic gene clusters that contain multiple genes that are co-transcribed from a single promoter. We have recently described the presence of a modified DNA base J and variant of histone H3 (H3.V) at transcription termination sites within gene clusters where the loss of base J and H3.V leads to read-through transcription and the expression of downstream genes. We now identify a novel stable multimeric complex containing a J binding protein (JBP3), base J glucosyltransferase (JGT), PP1 phosphatase, PP1 interactive-regulatory protein (PNUTS) and Wdr82, which we refer to as PJW/PP1. A similar complex (PTW/PP1) has been shown to be involved in Pol II termination in humans and yeast. We demonstrate that PNUTS, JBP3 and Wdr82 mutants lead to read-through transcription in T. brucei. Our data suggest the PJW/PP1 complex regulates termination by recruitment to termination sites via JBP3-base J interactions and dephosphorylation of specific proteins (including Pol II and termination factors) by PP1. These findings significantly expand our understanding of mechanisms underlying transcription termination in eukaryotes, including divergent organisms that utilize polycistronic transcription and novel epigenetic marks such as base J and H3.V. The studies also provide the first direct mechanistic link between J modification of DNA at termination sites and regulated Pol II termination and gene expression in kinetoplastids.


Open Biology ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 190072 ◽  
Author(s):  
Christine Clayton

In trypanosomes, RNA polymerase II transcription is polycistronic and individual mRNAs are excised by trans -splicing and polyadenylation. The lack of individual gene transcription control is compensated by control of mRNA processing, translation and degradation. Although the basic mechanisms of mRNA decay and translation are evolutionarily conserved, there are also unique aspects, such as the existence of six cap-binding translation initiation factor homologues, a novel decapping enzyme and an mRNA stabilizing complex that is recruited by RNA-binding proteins. High-throughput analyses have identified nearly a hundred regulatory mRNA-binding proteins, making trypanosomes valuable as a model system to investigate post-transcriptional regulation.


2018 ◽  
Author(s):  
Marcelo S. da Silva ◽  
Gustavo R. Cayres-Silva ◽  
Marcela O. Vitarelli ◽  
Paula A. Marin ◽  
Priscila M. Hiraiwa ◽  
...  

ABSTRACTThe cosynthesis of DNA and RNA potentially generates conflicts between replication and transcription, which can lead to genomic instability. In trypanosomatids, eukaryotic parasites that perform polycistronic transcription, this phenomenon and its consequences have not yet been investigated. Here, using equations and computational analysis we demonstrated that the number of constitutive origins mapped in the Trypanosoma brucei genome is close to the minimum required to complete replication within S phase duration. However, taking into account the location of these origins in the genome, the replication in due time becomes virtually impossible, making it necessary to activate non-constitutive origins. Moreover, computational and biological assays pointed to transcription being responsible for activating non-constitutive origins. Together, our results suggest that transcription action through conflicts with replication contributes to the firing of non-constitutive origins, maintaining the robustness of S phase duration. The usage of this entire pool of origins seems to be of paramount importance for the survival of this parasite that infects million people around the world since it contributes to the maintenance of the replication of its DNA.


Sign in / Sign up

Export Citation Format

Share Document