Cytokines and antibody subclass associated with protective immunity against blood-stage malaria in mice vaccinated with the C terminus of merozoite surface protein 1 plus a novel adjuvant.

1996 ◽  
Vol 64 (9) ◽  
pp. 3532-3536 ◽  
Author(s):  
J B De Souza ◽  
I T Ling ◽  
S A Ogun ◽  
A A Holder ◽  
J H Playfair
1998 ◽  
Vol 66 (8) ◽  
pp. 3925-3930 ◽  
Author(s):  
Lilian M. Spencer Valero ◽  
Solabomi A. Ogun ◽  
Suzanne L. Fleck ◽  
Irene T. Ling ◽  
Terry J. Scott-Finnigan ◽  
...  

ABSTRACT We have produced monoclonal antibodies against Plasmodium yoelii merozoite surface protein 1 (MSP-1) and have assessed their ability to suppress blood stage parasitemia by passive immunization. Six immunoglobulin G antibodies were characterized in detail: three (B6, D3, and F5) were effective in suppressing a lethal blood stage challenge infection, two (B10 and G3) were partially effective, and one (B4) was ineffective. MSP-1 is the precursor to a complex of polypeptides on the merozoite surface; all of the antibodies bound to this precursor and to an ∼42-kDa fragment (MSP-142) that is derived from the C terminus of MSP-1. MSP-142 is further cleaved to an N-terminal ∼33-kDa polypeptide (MSP-133) and a C-terminal ∼19-kDa polypeptide (MSP-119) comprised of two epidermal growth factor (EGF)-like modules. D3 reacted with MSP-142 but not with either of the constituents MSP-133 and MSP-119, B4 recognized an epitope within the N terminus of MSP-133, and B6, B10, F5, and G3 bound to MSP-119. B10 and G3 bound to epitopes that required both C-terminal EGF-like modules for their formation, whereas B6 and F5 bound to epitopes in the first EGF-like module. These results indicate that at least three distinct epitopes on P. yoelii MSP-1 are recognized by antibodies that suppress parasitemia in vivo.


Open Biology ◽  
2014 ◽  
Vol 4 (1) ◽  
pp. 130091 ◽  
Author(s):  
Rachel D. Curd ◽  
Berry Birdsall ◽  
Madhusudan Kadekoppala ◽  
Solabomi A. Ogun ◽  
Geoffrey Kelly ◽  
...  

Merozoite surface protein 1 (MSP1) has been identified as a target antigen for protective immune responses against asexual blood stage malaria, but effective vaccines based on MSP1 have not been developed so far. We have modified the sequence of Plasmodium yoelii MSP1 19 (the C-terminal region of the molecule) and examined the ability of the variant proteins to bind protective monoclonal antibodies and to induce protection by immunization. In parallel, we examined the structure of the protein and the consequences of the amino acid changes. Naturally occurring sequence polymorphisms reduced the binding of individual protective antibodies, indicating that they contribute to immune evasion, but immunization with these variant proteins still provided protective immunity. One variant that resulted in the localized distortion of a loop close to the N-terminus of MSP1 19 almost completely ablated protection by immunization, indicating the importance of this region of MSP1 19 as a target for protective immunity and in vaccine development.


2004 ◽  
Vol 72 (1) ◽  
pp. 247-252 ◽  
Author(s):  
Soe Soe ◽  
Michael Theisen ◽  
Christian Roussilhon ◽  
Khin-Saw- Aye ◽  
Pierre Druilhe

ABSTRACT We performed a longitudinal clinical and parasitological follow-up study in OoDo, a village in southeast Asia in which malaria is hyperendemic, in order to assess the association between protection against malaria attacks and antibodies to three currently evaluated vaccine candidates, merozoite surface protein 1 (MSP1), MSP3, and the 220-kDa glutamate-rich protein (GLURP) from Plasmodium falciparum. Our results showed that the levels of cytophilic immunoglobulin G3 (IgG3) antibodies against conserved regions of MSP3 and GLURP were significantly correlated with protection against clinical P. falciparum malaria. In contrast, the levels of noncytophilic IgG4 antibodies against GLURP increased with the number of malaria attacks. Furthermore, we observed a complementary effect of the MSP3- and GLURP-specific IgG3 antibodies in relation to malaria protection. In the individuals that did not respond to one of the antigens, a strong response to the other antigen was consistently detected and was associated with protection, suggesting that induction of antibodies against both MSP3 and GLURP could be important for the development of protective immunity. The complementarity of the responses to the two main targets of antibody-dependent cellular inhibition identified to date provides the first rational basis for combining these two antigens in a hybrid vaccine formulation.


Parasitology ◽  
2009 ◽  
Vol 136 (12) ◽  
pp. 1445-1456 ◽  
Author(s):  
A. A. HOLDER

SUMMARYOver the last 30 years, evidence has been gathered suggesting that merozoite surface protein 1 (MSP1) is a target of protective immunity against malaria. In a variety of experimental approaches usingin vitromethodology, animal models and sero-epidemiological techniques, the importance of antibody against MSP1 has been established but we are still finding out what are the mechanisms involved. Now that clinical trials of MSP1 vaccines are underway and the early results have been disappointing, it is increasingly clear that we need to know more about the mechanisms of immunity, because a better understanding will highlight the limitations of our current assays and identify the improvements required. Understanding the structure of MSP1 will help us design and engineer better antigens that are more effective than the first generation of vaccine candidates. This review is focused on the carboxy-terminus of MSP1.


Sign in / Sign up

Export Citation Format

Share Document