b cell epitopes
Recently Published Documents


TOTAL DOCUMENTS

856
(FIVE YEARS 228)

H-INDEX

49
(FIVE YEARS 7)

2022 ◽  
Vol 162 ◽  
pp. 105341
Author(s):  
Nathalia C. Galvani ◽  
Amanda S. Machado ◽  
Daniela P. Lage ◽  
Vívian T. Martins ◽  
Daysiane de Oliveira ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 65
Author(s):  
Xin Zhang ◽  
Shuli Sang ◽  
Qing Guan ◽  
Haoxia Tao ◽  
Yanchun Wang ◽  
...  

Helicobacter pylori (H. pylori), heat-shock protein A (HspA), is a bacterial heat-shock chaperone that serves as a nickel ion scavenging protein. Ni2+ is an important co-factor required for the maturation and enzymatic activity of H. pylori urease and [NiFe] hydrogenase, both of which are key virulence factors for pathogen survival and colonization. HspA is an important target molecule for the diagnosis, treatment, and immune prevention of H. pylori. In this work, HspA was truncated into five fragments to determine the location of an antigen immunodominant peptide. A series of overlapping, truncated 11-amino-acid peptides in immunodominant peptide fragments were synthesized chemically and screened by ELISA. The immunogenicity and antigenicity of the screened epitope peptides were verified by ELISA, Western blot, and lymphocyte proliferation tests. Two novel B-cell epitopes were identified, covering amino acids 2–31 of HspA, which are HP11 (2–12; KFQPLGERVLV) and HP19 (18–28; ENKTSSGIIIP). The antiserum obtained from HP11-KLH and HP19-KLH immunized mice can bind to naive HspA in H. pylori SS2000, rHspA expressed in E. coli, and the corresponding GST fusion peptide. Among HspA seropositive persons, the seropositive rates of HP11 and HP19 were 21.4% and 33.3%, respectively. Both of the B-cell epitopes of HspA are highly conserved epitopes with good antigenicity and immunogenicity.


2021 ◽  
Author(s):  
Mustafa Elhag ◽  
Abdelrahman Hamza Abdelmoneim ◽  
Anfal Osama Sati ◽  
Moaaz Mohammed Saadaldin ◽  
Nagla Mohammad Ahmad ◽  
...  

Brucella abortus is a small aerobic, non-spore-forming, non-motile intracellular coccobacilli localized in the reproductive organs of host animals and causes acute or chronic disorders. It infects approximately 200 cases per 100,000 of the population and has become endemic in many countries. OmpW family protein is an outer membrane protein involved in the initial interaction between the pathogen and its host. This study predicts an effective epitope-based vaccine against OmpW family protein of Brucella abortus using immunoinformatics tools. Sequences were obtained from NCBI and prediction tests were accomplished to analyze possible epitopes for B and T cells. Seven B cell epitopes passed the antigenicity, accessibility and hydrophilicity tests. Forty-three MHC I epitopes were the most promising, while 438 from MHC II. For the population coverage, the epitopes covered 99.97% of the alleles worldwide excluding certain MHC II alleles. We recommend invivo and invitro studies to prove its effectiveness.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Clara Gazzinelli-Guimarães ◽  
Denise Silva Nogueira ◽  
Chiara Cássia Oliveira Amorim ◽  
Fabrício Marcus Silva Oliveira ◽  
Anderson Coqueiro-Dos-Santos ◽  
...  

Control of human ascariasis, the most prevalent neglected tropical disease globally affecting 450 million people, mostly relies on mass drug administration of anthelmintics. However, chemotherapy alone is not efficient due to the high re-infection rate for people who live in the endemic area. The development of a vaccine that reduces the intensity of infection and maintains lower morbidity should be the primary target for infection control. Previously, our group demonstrated that immunization with crude Ascaris antigens in mice induced an IgG-mediated protective response with significant worm reduction. Here, we aimed to develop a multipeptide chimera vaccine based on conserved B-cell epitopes predicted from 17 common helminth proteomes using a bioinformatics algorithm. More than 480 B-cell epitopes were identified that are conserved in all 17 helminths. The Ascaris-specific epitopes were selected based on their reactivity to the pooled sera of mice immunized with Ascaris crude antigens or infected three times with A. suum infective eggs. The top 35 peptides with the strongest reactivity to Ascaris immune serum were selected to construct a chimeric antigen connected in sequence based on conformation. This chimera, called ASCVac-1, was produced as a soluble recombinant protein in an Escherichia coli expression system and, formulated with MPLA, was used to immunize mice. Mice immunized with ASCVac-1/MPLA showed around 50% reduced larvae production in the lungs after being challenged with A. suum infective eggs, along with significantly reduced inflammation and lung tissue/function damage. The reduced parasite count and pathology in infected lungs were associated with strong Th2 immune responses characterized by the high titers of antigen-specific IgG and its subclasses (IgG1, IgG2a, and IgG3) in the sera and significantly increased IL-4, IL-5, IL-13 levels in lung tissues. The reduced IL-33 titers and stimulated eosinophils were also observed in lung tissues and may also contribute to the ASCVac-1-induced protection. Taken together, the preclinical trial with ASCVac-1 chimera in a mouse model demonstrated its significant vaccine efficacy associated with strong IgG-based Th2 responses, without IgE induction, thus reducing the risk of an allergic response. All results suggest that the multiepitope-based ASCVac-1 chimera is a promising vaccine candidate against Ascaris sp. infections.


2021 ◽  
Vol 21 (3) ◽  
pp. 147-151
Author(s):  
Ivan А. Sychev ◽  
Pavel M. Kopeikin ◽  
Elena V. Tsvetkova ◽  
Olga V. Shamova ◽  
Yulia A. Desheva ◽  
...  

BACKGROUND: Influenza is a dangerous, widespread infectious disease that takes thousands of lives during annual epidemics, and also causes significant damage to the countrys economy. The most effective means of fighting the influenza virus is vaccination of the population. Due to the variability of influenza viruses, the strain composition of influenza vaccines must be updated annually. In this regard, an urgent task is to improve the existing influenza vaccines in order to expand their spectrum of action. One of the promising approaches is the targeted induction of the humoral immune response to the conservative linear epitopes of influenza A virus neuraminidase. AIM: This project is aimed at assessing the immunogenicity and cross-protective activity of conserved neuraminidase epitopes in order to select promising targets for the targeted design of broad-spectrum influenza vaccines. MATERIALS AND METHODS: Peptides corresponding to linear B-cell epitopes of neuraminidase were chemically synthesized de novo. The peptides were conjugated with keyhole limpet hemocyanin. CBA mice were immunized and challenged with A/PR/8/34 (H1N1) and A/Philippines/2/1982 (H3N2) viruses at a dose of 3 LD50. The survival rate of the animals was assessed within 14 days after infection. The immunogenicity of the peptides was assessed in a standard enzyme-linked immunosorbent assay using the recombinant neuraminidase proteins of the viruses A/California/07/2009 (H1N1) and A/Hong Kong/4801/2014 (H3N2) as antigen. RESULTS: Immunization of neuraminidase with peptides MNPNQKIITIGS and ILRTQESEC, but not DNWKGSNRP, protected mice from lethality caused by the H1N1 and/or H3N2 virus. The protective potential of the peptides correlated with the levels of antineuraminidase antibodies after immunization. CONCLUSIONS: The presence of a cross-protective potential in two conserved linear B-cell epitopes of influenza A neuraminidase (MNPNQKIITIGS and ILRTQESEC) allows them to be recommended as a target for the development of a broad-spectrum influenza vaccine.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260360
Author(s):  
Ehsan Ahmadi ◽  
Mohammad Reza Zabihi ◽  
Ramin Hosseinzadeh ◽  
Leila Mohamed Khosroshahi ◽  
Farshid Noorbakhsh

Recent emergence of SARS-CoV-2 and associated COVID-19 pandemic have posed a great challenge for the scientific community. In this study, we performed bioinformatic analyses on SARS-CoV-2 protein sequences, trying to unravel potential molecular similarities between this newly emerged pathogen with non-coronavirus ssRNA viruses. Comparing the proteins of SARS-CoV-2 with non-coronavirus positive and negative strand ssRNA viruses revealed multiple sequence similarities between SARS-CoV-2 and non-coronaviruses, including similarities between RNA-dependent RNA-polymerases and helicases (two highly-conserved proteins). We also observed similarities between SARS-CoV-2 surface (i.e. spike) protein with paramyxovirus fusion proteins. This similarity was restricted to a segment of spike protein S2 subunit which is involved in cell fusion. We next analyzed spike proteins from SARS-CoV-2 “variants of concern” (VOCs) and “variants of interests” (VOIs) and found that some of these variants show considerably higher spike-fusion similarity with paramyxoviruses. The ‘spike-fusion’ similarity was also observed for some pathogenic coronaviruses other than SARS-CoV-2. Epitope analysis using experimentally verified data deposited in Immune Epitope Database (IEDB) revealed that several B cell epitopes as well as T cell and MHC binding epitopes map within the spike-fusion similarity region. These data indicate that there might be a degree of convergent evolution between SARS-CoV-2 and paramyxovirus surface proteins which could be of pathogenic and immunological importance.


2021 ◽  
Vol 948 (1) ◽  
pp. 012080
Author(s):  
S Pambudi ◽  
D Irawan ◽  
A Danny ◽  
T Widayanti ◽  
Tarwadi

Abstract The identification of human Non-Structural-1 (NS1) protein epitopes will help us better understand Dengue virus (DENV) immunopathogenesis. In this study, several online and offline bioinformatic prediction tools were exploited to predict and analyze T-cell and B-cell epitopes of DENV NS1 consensus sequences originated from Indonesian clinical isolates. We identified a potential peptide at NS1155--163 (VEDYGFGIF) which interact with MHC-I allele HLA-B*40:01 and showed high binding affinity (IC50) scores ranging between 63.8 nM to 183.9 nM for all Indonesian DENV serotypes. Furthermore, we have succeeded identified a region at the C-terminal of Indonesian DENV NS1 protein between 325--344 as part of discontinuous antigenic epitope which conserved for all serotypes. Our analyses showed this region could induce strong and persistent antibody against all DENV serotypes by interacting with MHC-I molecule and also recognized by B-cell receptor. The identification of DENV NS1 T-cell and B-cell epitopes may help in the development of a new vaccine, drug discovery, and diagnostic system to help eradicate dengue infection.


Sign in / Sign up

Export Citation Format

Share Document