scholarly journals Production and Characterization of a Set of Mouse-Human Chimeric Immunoglobulin G (IgG) Subclass and IgA Monoclonal Antibodies with Identical Variable Regions Specific forPseudomonas aeruginosa Serogroup O6 Lipopolysaccharide

1998 ◽  
Vol 66 (9) ◽  
pp. 4137-4142 ◽  
Author(s):  
Michael J. Preston ◽  
A. Alev Gerçeker ◽  
Mitchell E. Reff ◽  
Gerald B. Pier

ABSTRACT The heavy- and light-chain variable regions from a murine monoclonal antibody that recognize Pseudomonas aeruginosaserogroup O6 lipopolysaccharide (LPS) were used to generate a series of chimeric mouse-human monoclonal antibodies with identical variable regions. The murine variable-region gene segments were cloned into an immunoglobulin (Ig) cDNA expression vector that contained the human kappa light-chain and IgG1 constant regions. The IgG1 heavy-chain constant region was then replaced with the human IgG2, IgG3, IgG4, or IgA1 heavy-chain constant region. The five different expression vectors were transfected into Chinese hamster ovary cells for antibody production. The chimeric antibodies exhibited immunoreactivity and affinity similar to that of the parental murine IgG antibody toward whole cells of a serogroup O6 strain. In vitro complement deposition assays demonstrated that the chimeric IgG4 and IgA antibodies did not mediate the deposition of complement component C3 onto the surface of either purified LPS or whole bacteria. The chimeric IgG1 and IgG3 antibodies were similar in their ability to deposit C3 onto the surface of both bacteria and LPS, while IgG2 antibody was more effective at depositing C3 onto the surface of bacteria than onto purified LPS. The pattern of opsonophagocytic activity of the chimeric monoclonal antibodies was similar to that of complement deposition onto bacterial cells in that the chimeric IgG1 and IgG3 had the highest opsonic activity. Although IgG2 deposited more C3 onto the bacterial surface than did IgG4 or IgA, all three of these isotypes had low opsonic activity against the serogroup O6 target strain. This series of related antibodies will help reveal functional differences in efficacy among protective antibodies to P. aeruginosa and will be critical for defining the optimal formulation of either a vaccine for active immunization or a polyclonal intravenous IgG or monoclonal antibody cocktail for passive immunotherapy.

Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 435-445 ◽  
Author(s):  
ME Reff ◽  
K Carner ◽  
KS Chambers ◽  
PC Chinn ◽  
JE Leonard ◽  
...  

Murine monoclonal antibody 2B8 specifically recognizes the CD20 phosphoprotein expressed on the surface of normal B lymphocytes and B- cell lymphomas. The light- and heavy-chain variable regions of 2B8 were cloned, after amplification by the polymerase chain reaction, into a cDNA expression vector that contained human IgG1 heavy chain and human kappa-light chain constant regions. High-level expression of chimeric- 2B8 antibody (C2B8) was obtained in Chinese hamster ovary cells. Purified C2B8 exhibited antigen binding affinity and human-tissue reactivity similar to the native murine antibody. In vitro studies showed the ability of C2B8 to bind human C1q, mediate complement- dependent cell lysis of human B-lymphoid cell lines, and lyse human target cells through antibody-dependent cellular cytotoxicity. Infusion of macaque cynomolgus monkeys with doses ranging from 1.6 mg/kg to 6.4 mg/kg resulted in greater than 98% depletion of peripheral blood (PB) B cells and 40% to 70% depletion of lymph node B cells. Recovery of PB B cells usually started at 2 weeks after treatment and required 60 to greater than 90 days to reach normal levels. As much as 95% depletion of B cells in peripheral lymph nodes and bone marrow was observed following weekly injections of 16.8 mg/kg antibody. No toxicity was observed in any of the animals. These results offer the possibility of using an “immunologically active” chimeric anti-CD20 antibody as an alternative approach in the treatment of B-cell lymphoma.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 435-445 ◽  
Author(s):  
ME Reff ◽  
K Carner ◽  
KS Chambers ◽  
PC Chinn ◽  
JE Leonard ◽  
...  

Abstract Murine monoclonal antibody 2B8 specifically recognizes the CD20 phosphoprotein expressed on the surface of normal B lymphocytes and B- cell lymphomas. The light- and heavy-chain variable regions of 2B8 were cloned, after amplification by the polymerase chain reaction, into a cDNA expression vector that contained human IgG1 heavy chain and human kappa-light chain constant regions. High-level expression of chimeric- 2B8 antibody (C2B8) was obtained in Chinese hamster ovary cells. Purified C2B8 exhibited antigen binding affinity and human-tissue reactivity similar to the native murine antibody. In vitro studies showed the ability of C2B8 to bind human C1q, mediate complement- dependent cell lysis of human B-lymphoid cell lines, and lyse human target cells through antibody-dependent cellular cytotoxicity. Infusion of macaque cynomolgus monkeys with doses ranging from 1.6 mg/kg to 6.4 mg/kg resulted in greater than 98% depletion of peripheral blood (PB) B cells and 40% to 70% depletion of lymph node B cells. Recovery of PB B cells usually started at 2 weeks after treatment and required 60 to greater than 90 days to reach normal levels. As much as 95% depletion of B cells in peripheral lymph nodes and bone marrow was observed following weekly injections of 16.8 mg/kg antibody. No toxicity was observed in any of the animals. These results offer the possibility of using an “immunologically active” chimeric anti-CD20 antibody as an alternative approach in the treatment of B-cell lymphoma.


1989 ◽  
Vol 75 (2) ◽  
pp. 97-99
Author(s):  
Miryam Martinetti ◽  
Carolina Tarenzi ◽  
Laura Salvaneschi ◽  
Maria Teresa Illeni ◽  
Claudia Lombardo ◽  
...  

There is some evidence that genes at loci on the lower end of chromosome 14, encoding for the immunoglobulin heavy chains allotypes (Gm), may influence susceptibility to human tumors. We examined the Gm and Km (IgK light chain) allotype distribution in a sample of 41 patients with familial malignant melanoma and in 79 healthy relatives. An increased frequency of the haplotype carrying the Gm (2) allotype, namely Gm (1, 2, 17;..; 21), seemed to be peculiar to patients, since it was almost twice as frequent in them than in the healthy population and four times as frequent with respect to the healthy relatives. Our findings are in keeping with previous suggestions that in Caucasian melanoma patients genes of the immunoglobulin heavy chain constant region, or Gm-linked genes, may enhance susceptibility to malignant melanoma.


1974 ◽  
Vol 52 (7) ◽  
pp. 610-619 ◽  
Author(s):  
M. E. Percy ◽  
K. J. Dorrington

Both the light and gamma (heavy) chains of IgG(Sac) contain extensive deletions in their variable regions. The deletion in the light chain is internal (residues 18–88), whereas the deletion in the heavy chain is amino-terminal (residues 1–102). The hypervariable region just preceding the beginning of the constant region in other heavy chains (residues 103–115) is amino-terminal in heavy chain(Sac). In 4 mM acetate, pH 5.4, heavy chain(Sac) is dimeric like normal gamma chains, whereas light chain(Sac) is monomeric. Isolated light and heavy chains of IgG(Sac) recombine in vitro with each other and also with the heavy and light chains from a typical human IgG1-K myeloma protein, but not in a fashion entirely typical of other human gamma and light chains. These studies support the concept that non-covalent forces between the variable regions of the light and heavy chains are important in the assembly of the immunoglobulin molecule; and in view of the weak interaction between the constant region of light chain and heavy chain observed previously, our data suggest that there are points of contact between the hypervariable region of the gamma chain (residues 103–115) and the variable region of the light chain.


Genetics ◽  
1996 ◽  
Vol 144 (3) ◽  
pp. 1181-1194
Author(s):  
Wessel van der Loo ◽  
Patrick Boussès ◽  
Christian P Arthur ◽  
Jean-Louis Chapuis

Abstract Is there a selective advantage of increased diversity at one immunoglobulin locus when diversity at another locus is low? A previous paper demonstrated excess heterozygosity at the rabbit light chain b locus when heterozygosity was low at the heavy chain constant region e locus. Here we consider the reverse situation by analyzing allele distributions at heavy chain loci in populations fixed for the light chain b locus. We analyzed the a locus that encodes the predominantly expressed heavy chain variable region, and the d and e loci that control different parts of the Ig gamma class constant region. While there was excess heterozygosity, genetic differentiation between localities was extensive and was most pronounced for females. This was in marked contrast with observations in areas where b-locus diversity was important and confirms a negative correlation between e- and b-locus heterozygosity. Trigenic disequilibria corresponded to a significant negative correlation between e- and a-locus heterozygosity due mainly to strong variation among localities within the context of pronounced (digenic) linkage disequilibria. Although substantial, the average increase in a/e-locus single heterozygosity implemented by higher order disequilibria within localities was not significant.


Genetics ◽  
1993 ◽  
Vol 135 (1) ◽  
pp. 171-187 ◽  
Author(s):  
W van der Loo

Abstract Population genetic data are presented which should contribute to evaluation of the hypothesis that the extraordinary evolutionary patterns observed at the b locus of the rabbit immunoglobulin light chain constant region can be the outcome of overdominance-type selection. The analysis of allele correlations in natural populations revealed an excess of heterozygotes of about 10% at the b locus while heterozygote excess was not observed at loci determining the immunoglobulin heavy chain. Data from the published literature, where homozygote advantage was suggested, were reevaluated and found in agreement with data here presented. Gene diversity was evenly distributed among populations and showed similarities with patterns reported for histocompatibility loci. Analysis of genotypic disequilibria revealed strong digenic associations between the leading alleles of heavy and light chain constant region loci in conjunction with trigenic disequilibria corresponding to a preferential association of b locus heterozygosity with the predominant allele of the heavy chain e locus. It is argued that this may indicate compensatory or nonadditive aspects of a putative heterozygosity enhancing mechanism, implying that effects at the light chain might be more pronounced in populations fixed for the heavy chain polymorphism.


Sign in / Sign up

Export Citation Format

Share Document