variable regions
Recently Published Documents


TOTAL DOCUMENTS

1118
(FIVE YEARS 268)

H-INDEX

79
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Grant M Zane ◽  
Mark A Silveria ◽  
Nancy L Meyer ◽  
Tommi A White ◽  
Michael S Chapman

Adeno-associated virus (AAV) is the vector of choice for several approved gene therapy treatments and is the basis for many ongoing clinical trials. Various strains of AAV exist (referred to as serotypes), each with their own transfection characteristics. Here, we present a high-resolution cryo-electron microscopy structure (2.2 Å) for AAV serotype 4 (AAV4). The receptor responsible for transduction of the AAV4 clade of AAV viruses (including AAV11, 12 and rh32.33) is unknown. Other AAVs interact with the same cell receptor, Adeno-associated virus receptor (AAVR), in one of two different ways. AAV5-like viruses interact exclusively with the polycystic kidney disease-like [PKD]-1 domain of AAVR while most other AAVs interact primarily with the PKD2 domain. A comparison of the present AAV4 structure with prior corresponding structures of AAV5, AAV2 and AAV1 in complex with AAVR, provides a foundation for understanding why the AAV4-like clade is unable to interact with either PKD1 or PKD2. The conformation of the AAV4 capsid in variable regions I, III, IV and V on the viral surface appears to be sufficiently different from AAV2 to ablate binding with PKD2. Differences between AAV4 and AAV5 in variable region VII appear sufficient to exclude binding with PKD1.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Chinatsu Shinozaki ◽  
Keita Kohno ◽  
Mitsunori Shiroishi ◽  
Daisuke Takahashi ◽  
Yu Yoshikawa ◽  
...  

AbstractWe have recently developed a mouse monoclonal antibody (12–10H) binding to the head domain region in rat P2X4 receptor (rP2X4R, which is crucial for the pathogenesis of neuropathic pain) expressed on the cell with the highest binding affinity (KD = 20 nM). However, the 12–10H antibody failed to detect endogenously expressed P2X4Rs in microglia isolated from the spinal cord of rats whose spinal nerves were injured. Then, we prepared R5 mutant, in which five arginine residues were introduced into variable regions except for the “hot spot” in the 12–10H antibody to increase electrostatic interactions with the head domain, an anionic region, in rP2X4R. The mutation resulted in an increase of 50-fold in the affinity of the R5 mutant for the head domain with respect to the intact 12–10H antibody. As a result, detection of P2X4Rs endogenously expressed on primary cultured microglial cells originated from the neonatal rat brain and spinal cord microglia isolated from a rat model of neuropathic pain was achieved. These findings suggest a strategy to improve the affinity of a monoclonal antibody for an anionic antigen by the introduction of several arginine residues into variable regions other than the “hot spot” in the paratope.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Filipe Alves ◽  
Filipa M. S. Martins ◽  
Miguel Areias ◽  
Antonio Muñoz-Mérida

AbstractAnalysis of intra- and inter-population diversity has become important for defining the genetic status and distribution patterns of a species and a powerful tool for conservation programs, as high levels of inbreeding could lead into whole population extinction in few generations. Microsatellites (SSR) are commonly used in population studies but discovering highly variable regions across species’ genomes requires demanding computation and laboratorial optimization. In this work, we combine next generation sequencing (NGS) with automatic computing to develop a genomic-oriented tool for characterizing SSRs at the population level. Herein, we describe a new Python pipeline, named Micro-Primers, designed to identify, and design PCR primers for amplification of SSR loci from a multi-individual microsatellite library. By combining commonly used programs for data cleaning and microsatellite mining, this pipeline easily generates, from a fastq file produced by high-throughput sequencing, standard information about the selected microsatellite loci, including the number of alleles in the population subset, and the melting temperature and respective PCR product of each primer set. Additionally, potential polymorphic loci can be identified based on the allele ranges observed in the population, to easily guide the selection of optimal markers for the species. Experimental results show that Micro-Primers significantly reduces processing time in comparison to manual analysis while keeping the same quality of the results. The elapsed times at each step can be longer depending on the number of sequences to analyze and, if not assisted, the selection of polymorphic loci from multiple individuals can represent a major bottleneck in population studies.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Aviv Omer ◽  
Ayelet Peres ◽  
Oscar L Rodriguez ◽  
Corey T Watson ◽  
William Lees ◽  
...  

Abstract Background T and B cell receptor (TCR, BCR) repertoires constitute the foundation of adaptive immunity. Adaptive immune receptor repertoire sequencing (AIRR-seq) is a common approach to study immune system dynamics. Understanding the genetic factors influencing the composition and dynamics of these repertoires is of major scientific and clinical importance. The chromosomal loci encoding for the variable regions of TCRs and BCRs are challenging to decipher due to repetitive elements and undocumented structural variants. Methods To confront this challenge, AIRR-seq-based methods have recently been developed for B cells, enabling genotype and haplotype inference and discovery of undocumented alleles. However, this approach relies on complete coverage of the receptors’ variable regions, whereas most T cell studies sequence a small fraction of that region. Here, we adapted a B cell pipeline for undocumented alleles, genotype, and haplotype inference for full and partial AIRR-seq TCR data sets. The pipeline also deals with gene assignment ambiguities, which is especially important in the analysis of data sets of partial sequences. Results From the full and partial AIRR-seq TCR data sets, we identified 39 undocumented polymorphisms in T cell receptor Beta V (TRBV) and 31 undocumented 5 ′ UTR sequences. A subset of these inferences was also observed using independent genomic approaches. We found that a single nucleotide polymorphism differentiating between the two documented T cell receptor Beta D2 (TRBD2) alleles is strongly associated with dramatic changes in the expressed repertoire. Conclusions We reveal a rich picture of germline variability and demonstrate how a single nucleotide polymorphism dramatically affects the composition of the whole repertoire. Our findings provide a basis for annotation of TCR repertoires for future basic and clinical studies.


2022 ◽  
Vol 8 (1) ◽  
pp. 53
Author(s):  
Raman Thangavelu ◽  
Esack Edwinraj ◽  
Muthukathan Gopi ◽  
Periyasamy Pushpakanth ◽  
Kotteswaran Sharmila ◽  
...  

Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc), is the most lethal soil-borne fungal pathogen infecting bananas. Foc race 1 (R1) and 4 (R4) are the two most predominant races affecting the economically important Cavendish group of bananas in India. A total of seven vegetative compatibility groups (VCGs) from three pathogenic races were isolated during our field survey and were found to be highly virulent towards cv. Grande Naine. According to comparative genome analyses, these Indian Foc VCGs were diverse in genomic organization and effector gene profiles. As a result, false-positive results were obtained with currently available molecular markers. In this context, the study has been initiated to develop PCR-based molecular markers for the unambiguous identification of Indian Foc R1 and R4 isolates. Whole-genome sequences of Foc R1 (GCA_011316005.3), Foc TR4 (GCA_014282265.3), and Foc STR4 (GCA_016802205.1), as well as the reference genomes of Foc (ASM799451v1) and F. oxysporum f. sp. lycopersici (Fol; ASM14995v2), were aligned to identify unique variable regions among the Foc races. Using putative chromosome and predicted gene comparison, race-specific unique Foc virulence genes were identified. The putative lineage-specific identified genes encoding products secreted in xylem (SIX) that may be necessary for disease development in the banana. An in silico analysis was performed and primers were designed from a region where sequences were dissimilar with other races to develop a specific marker for Foc R1, R4, TR4, and STR4. These race-specific markers allowed target amplification in the characterized highly virulent Foc isolates, and did not show any cross-amplification to any other Foc races, VCGs or banana pathogens, Fusarium species, and non-pathogenic Fusarium oxysporum isolates. The study demonstrated that the molecular markers developed for all the three Foc races of India could detect the pathogen in planta and up to 0.025 pg µL−1 DNA levels. Thus, the markers developed in this study are novel and could potentially be useful for the accurate diagnosis and detection of the Indian Foc races which are important for the effective management of the disease.


2022 ◽  
Vol 12 ◽  
Author(s):  
Tao Yu ◽  
Jian Gao ◽  
Pei-Chun Liao ◽  
Jun-Qing Li ◽  
Wen-Bao Ma

Acer L. (Sapindaceae) is one of the most diverse and widespread plant genera in the Northern Hemisphere. It comprises 124–156 recognized species, with approximately half being native to Asia. Owing to its numerous morphological features and hybridization, this genus is taxonomically and phylogenetically ranked as one of the most challenging plant taxa. Here, we report the complete chloroplast genome sequences of five Acer species and compare them with those of 43 published Acer species. The chloroplast genomes were 149,103–158,458 bp in length. We conducted a sliding window analysis to find three relatively highly variable regions (psbN-rps14, rpl32-trnL, and ycf1) with a high potential for developing practical genetic markers. A total of 76–103 SSR loci were identified in 48 Acer species. The positive selection analysis of Acer species chloroplast genes showed that two genes (psaI and psbK) were positively selected, implying that light level is a selection pressure for Acer species. Using Bayes empirical Bayes methods, we also identified that 20 cp gene sites have undergone positive selection, which might result from adaptation to specific ecological niches. In phylogenetic analysis, we have reconfirmed that Acer pictum subsp. mono and A. truncatum as sister species. Our results strongly support the sister relationships between sections Platanoidea and Macrantha and between sections Trifoliata and Pentaphylla. Moreover, series Glabra and Arguta are proposed to promote to the section level. The chloroplast genomic resources provided in this study assist taxonomic and phylogenomic resolution within Acer and the Sapindaceae family.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Xiu-Xiu Guo ◽  
Xiao-Jian Qu ◽  
Xue-Jie Zhang ◽  
Shou-Jin Fan

Aristidoideae is a subfamily in the PACMAD clade of family Poaceae, including three genera, Aristida, Stipagrostis, and Sartidia. In this study, the plastomes of Aristida adscensionis and Stipagrostis pennata were newly sequenced, and a total of 16 Aristidoideae plastomes were compared. All plastomes were conservative in genome size, gene number, structure, and IR boundary. Repeat sequence analysis showed that forward and palindrome repeats were the most common repeat types. The number of SSRs ranged from 30 (Sartidia isaloensis) to 54 (Aristida purpurea). Codon usage analysis showed that plastome genes preferred to use codons ending with A/T. A total of 12 highly variable regions were screened, including four protein coding sequences (matK, ndhF, infA, and rpl32) and eight non-coding sequences (rpl16-1-rpl16-2, ccsA-ndhD, trnY-GUA-trnD-GUC, ndhF-rpl32, petN-trnC-GCA, trnT-GGU-trnE-UUC, trnG-GCC-trnfM-CAU, and rpl32-trnL-UAG). Furthermore, the phylogenetic position of this subfamily and their intergeneric relationships need to be illuminated. All Maximum Likelihood and Bayesian Inference trees strongly support the monophyly of Aristidoideae and each of three genera, and the clade of Aristidoideae and Panicoideae was a sister to other subfamilies in the PACMAD clade. Within Aristidoideae, Aristida is a sister to the clade composed of Stipagrostis and Sartidia. The divergence between C4 Stipagrostis and C3 Sartidia was estimated at 11.04 Ma, which may be associated with the drought event in the Miocene period. Finally, the differences in carbon fixation patterns, geographical distributions, and ploidy may be related to the difference of species numbers among these three genera. This study provides insights into the phylogeny and evolution of the subfamily Aristidoideae.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jing Ye ◽  
Dengming Lai ◽  
Dan Cao ◽  
Linhua Tan ◽  
Lei Hu ◽  
...  

Background: Biliary atresia (BA) is considered to be an autoimmune-mediating inflammatory injury. The pathogenesis of BA has been proposed with the clonal transformation of T cells expressing analogous T-cell receptor β-chain variable regions (TRBVs).Methods: The TRBV profile of the peripheral blood mononuclear cells (PBMCs) in infants with BA and control infants (healthy donors, HDs), respectively, were characterized by using high-throughput sequencing (HTS). The diversity of T cells was analyzed based on the frequency of complementarity-determining region 3 (CDR3) or V(CDR3)J. Moreover, the correlation between absolute lymphocyte count (ALC) and lactate dehydrogenase (LDH) or diversity (clonality) indices, respectively, were analyzed for subjects with BA and HD.Results: The diversity indices of CDR3, V(CDR3)J in BA are lower than those in subjects with HD, in addition, there are significantly different levels of neutrophile, neutrophile/lymphocyte ratio (NLR), and LDH between groups of BA and HD. The correlation between ALC and diversity index is significant in subjects with HD but is not for subjects with BA. Conversely, the relationship between ALC and LDH is significant in subjects with BA but is not for subjects with HD. Moreover, 12 CDR3 motifs are deficient or lower expression in BA compared with that in the HD group.Conclusion: Our results demonstrate that the profile of TRBV repertoire is significantly different between subjects with BA and HD, and suggest that the immune imbalance and elevated LDH level are associated with the pathogenesis of BA. Moreover, the values of neutrophile, NLR, and LDH could be used for the differential diagnosis of BA.


2021 ◽  
Author(s):  
Punit Prasad ◽  
Soumendu Mahapatra ◽  
Rasmita Mishra ◽  
Krushna Chandra Murmu ◽  
Shifu Aggarwal ◽  
...  

Abstract Background The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is a major global health concern. This virus infects the upper respiratory tract and causes pneumonia-like symptoms. So far, few studies have shown alterations in nasopharyngeal (NP) microbial diversity, enrichment of opportunistic pathogens and their role in co-infections during respiratory infections. Therefore, we hypothesized that microbial diversity changes, with increase in the population of opportunistic pathogens, during SARS-CoV2 infection in the nasopharynx which may be involved in co-infection in COVID-19 patients. Methods The 16S rRNA variable regions, V1-V9, of NP samples of control and COVID-19 (symptomatic and asymptomatic) patients were sequenced using the Oxford Nanopore™ technology. Comprehensive bioinformatics analysis for determining alpha/beta diversities, non-metric multidimensional scaling, correlation studies, canonical correspondence analysis, linear discriminate analysis, and dysbiosis index were used to analyze the control and COVID-19-specific NP microbiomes. Results We observed significant dysbiosis in COVID-19 NP microbiome with increase in abundance of opportunistic pathogens at genus and species levels in asymptomatic/symptomatic patients. The significant abundance of Mycobacteria spp. and Mycoplasma spp. in symptomatic patients suggest their association and role in co-infections in COVID-19 patients. Furthermore, we found strong correlation of enrichment of Mycobacteria and Mycoplasma with the occurrences of chest pain and fever in symptomatic COVID-19 patients. Conclusion This is the first study from India to show the abundance of Mycobacteria and Mycoplasma opportunistic pathogens in non-hospitalized COVID-19 patients and their relationship with symptoms, indicating the possibility of co-infections.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1122
Author(s):  
Mirjana Beribaka ◽  
Mihailo Jelić ◽  
Marija Tanasković ◽  
Cvijeta Lazić ◽  
Marina Stamenković-Radak

Life history traits determine the persistence and reproduction of each species. Factors that can affect life history traits are numerous and can be of different origin. We investigated the influence of population origin and heavy metal exposure on microbiota diversity and two life history traits, egg-to-adult viability and developmental time, in Drosophila melanogaster and Drosophila subobscura, grown in the laboratory on a lead (II) acetate-saturated substrate. We used 24 samples, 8 larval and 16 adult samples (two species × two substrates × two populations × two sexes). The composition of microbiota was determined by sequencing (NGS) of the V3–V4 variable regions of the 16S rRNA gene. The population origin showed a significant influence on life history traits, though each trait in the two species was affected differentially. Reduced viability in D. melanogaster could be a cost of fast development, decrease in Lactobacillus abundance and the presence of Wolbachia. The heavy metal exposure in D. subobscura caused shifts in developmental time but maintained the egg-to-adult viability at a similar level. Microbiota diversity indicated that the Komagataeibacter could be a valuable member of D. subobscura microbiota in overcoming the environmental stress. Research on the impact of microbiota on the adaptive response to heavy metals and consequently the potential tradeoffs among different life history traits is of great importance in evolutionary research.


Sign in / Sign up

Export Citation Format

Share Document