scholarly journals Antigenic Structure of Outer Membrane Protein E ofMoraxella catarrhalis and Construction and Characterization of Mutants

2000 ◽  
Vol 68 (11) ◽  
pp. 6250-6256 ◽  
Author(s):  
Timothy F. Murphy ◽  
Aimee L. Brauer ◽  
Norine Yuskiw ◽  
Thomas J. Hiltke

ABSTRACT Outer membrane protein E (OMP E) is a 50-kDa protein ofMoraxella catarrhalis which possesses several characteristics indicating that the protein will be an effective vaccine antigen. To study the antigenic structure of OMP E, eight monoclonal antibodies were developed and characterized. Three of the antibodies recognized epitopes which are present on the bacterial surface. Fusion peptides corresponding to overlapping regions of OMP E were constructed, and immunoblot assays were performed to localize the areas of the molecule bound by the monoclonal antibodies. These studies identified a surface-exposed epitope in the region of amino acids 80 through 180. To further study the protein, two mutants which lack OMP E were constructed. In bactericidal assays, the mutants were more readily killed by normal human serum compared to the isogenic parent strains. These results indicate that OMP E is involved in the expression of serum resistance of M. catarrhalis.

2001 ◽  
Vol 69 (6) ◽  
pp. 3576-3580 ◽  
Author(s):  
Timothy F. Murphy ◽  
Aimee L. Brauer ◽  
Norine Yuskiw ◽  
Erin R. McNamara ◽  
Charmaine Kirkham

ABSTRACT Outer membrane protein E (OMP E) is a 50-kDa protein ofMoraxella catarrhalis which has several features that suggest that the protein may be an effective vaccine antigen. To assess the conservation of OMP E among strains of M. catarrhalis,22 isolates were studied with eight monoclonal antibodies which recognize epitopes on different regions of the protein. Eighteen of 22 strains were reactive with all eight antibodies. The sequences ofompE from 16 strains of M. catarrhalis were determined, including the 4 strains which were nonreactive with selected monoclonal antibodies. Analysis of sequences indicate a high degree of conservation among strains, with sequence differences clustered in limited regions of the gene. To assess the stability ofompE during colonization of the human respiratory tract, the sequences of ompE of isolates collected from patients colonized with the same strain for 3 to 9 months were determined. The sequences remained unchanged. These results indicate that OMP E is highly conserved among strains of M. catarrhalis, and preliminary studies indicate that the gene which encodes OMP E remains stable during colonization of the human respiratory tract.


1998 ◽  
Vol 42 (11) ◽  
pp. 2870-2876 ◽  
Author(s):  
P. Christian Lück ◽  
Jürgen W. Schmitt ◽  
Arne Hengerer ◽  
Jürgen H. Helbig

ABSTRACT We determined the MICs of ampicillin, ciprofloxacin, erythromycin, imipenem, and rifampin for two clinical isolates of Legionella pneumophila serogroup 1 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay and by quantitative culture. To test the influence of subinhibitory concentrations (sub-MICs) of antimicrobial agents on Legionella uptake into Acanthamoeba castellanii and U937 macrophage-like cells, both strains were pretreated with 0.25 MICs of the antibiotics for 24 h. In comparison to that for the untreated control, subinhibitory concentrations of antibiotics significantly reducedLegionella uptake into the host cells. Measurement of the binding of monoclonal antibodies against several Legionellaantigens by enzyme-linked immunoassays indicated that sub-MIC antibiotic treatment reduced the expression of the macrophage infectivity potentiator protein (Mip), the Hsp 60 protein, the outer membrane protein (OmpM), an as-yet-uncharacterized protein of 55 kDa, and a few lipopolysaccharide (LPS) epitopes. In contrast, the expression of some LPS epitopes recognized by monoclonal antibodies 8/5 and 30/4 as well as a 45-kDa protein, a 58-kDa protein, and the major outer membrane protein (OmpS) remained unaffected.


1986 ◽  
Vol 164 (5) ◽  
pp. 1735-1748 ◽  
Author(s):  
P A Rice ◽  
H E Vayo ◽  
M R Tam ◽  
M S Blake

Neisseria gonorrhoeae that resist complement-dependent killing by normal human serum (NHS) are sometimes killed by immune convalescent serum from patients recovering from disseminated gonococcal infection (DGI). In these studies, killing by immune serum was prevented or blocked by IgG isolated from NHS. Purified human IgG antibodies directed against gonococcal protein III, an antigenically conserved outer membrane protein, contained most of the blocking activity in IgG. Antibodies specific for gonococcal porin (protein I), the major outer membrane protein, displayed no blocking function. In separate experiments, immune convalescent DGI serum which did not exhibit bactericidal activity was restored to killing by selective depletion of protein III antibodies by immunoabsorption. These studies indicate that protein III antibodies in normal and immune human serum play a role in serum resistance of N. gonorrhoeae.


2019 ◽  
Vol 91 (3) ◽  
pp. 90-98
Author(s):  
O. Yu. Galkin ◽  
◽  
O. B. Besarab ◽  
Yu. V. Gorshunov ◽  
O. M. Ivanova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document