scholarly journals Cleavage of the Human Immunoglobulin A1 (IgA1) Hinge Region by IgA1 Proteases Requires Structures in the Fc region of IgA

2003 ◽  
Vol 71 (5) ◽  
pp. 2563-2570 ◽  
Author(s):  
Koteswara R. Chintalacharuvu ◽  
Philip D. Chuang ◽  
Ashley Dragoman ◽  
Christine Z. Fernandez ◽  
Jiazhou Qiu ◽  
...  

ABSTRACT Secretory immunoglobulin A (IgA) protects the mucosal surfaces against inhaled and ingested pathogens. Many pathogenic bacteria produce IgA1 proteases that cleave in the hinge of IgA1, thus separating the Fab region from the Fc region and making IgA ineffective. Here, we show that Haemophilus influenzae type 1 and Neisseria gonorrhoeae type 2 IgA1 proteases cleave the IgA1 hinge in the context of the constant region of IgA1 or IgA2m(1) but not in the context of IgG2. Both Cα2 and Cα3 but not Cα1 are required for the cleavage of the IgA1 hinge by H. influenzae and N. gonorrhoeae proteases. While there was no difference in the cleavage kinetics between wild-type IgA1 and IgA1 containing only the first GalNAc residue of the O-linked glycans, the absence of N-linked glycans in the Fc increased the ability of the N. gonorrhoeae protease to cleave the IgA1 hinge. Taken together, these results suggest that, in addition to the IgA1 hinge, structures in the Fc region of IgA are required for the recognition and cleavage of IgA1 by the H. influenzae and N. gonorrhoeae proteases.

2020 ◽  
Vol 5 (44) ◽  
pp. eaay3254 ◽  
Author(s):  
Zhen Xu ◽  
Fumio Takizawa ◽  
Elisa Casadei ◽  
Yasuhiro Shibasaki ◽  
Yang Ding ◽  
...  

Although mammalian secretory immunoglobulin A (sIgA) targets mucosal pathogens for elimination, its interaction with the microbiota also enables commensal colonization and homeostasis. This paradoxical requirement in the control of pathogens versus microbiota raised the question of whether mucosal (secretory) Igs (sIgs) evolved primarily to protect mucosal surfaces from pathogens or to maintain microbiome homeostasis. To address this central question, we used a primitive vertebrate species (rainbow trout) in which we temporarily depleted its mucosal Ig (sIgT). Fish devoid of sIgT became highly susceptible to a mucosal parasite and failed to develop compensatory IgM responses against it. IgT depletion also induced a profound dysbiosis marked by the loss of sIgT-coated beneficial taxa, expansion of pathobionts, tissue damage, and inflammation. Restitution of sIgT levels in IgT-depleted fish led to a reversal of microbial translocation and tissue damage, as well as to restoration of microbiome homeostasis. Our findings indicate that specialization of sIgs in pathogen and microbiota control occurred concurrently early in evolution, thus revealing primordially conserved principles under which primitive and modern sIgs operate in the control of microbes at mucosal surfaces.


1990 ◽  
Vol 58 (9) ◽  
pp. 3073-3077 ◽  
Author(s):  
A E Wold ◽  
J Mestecky ◽  
M Tomana ◽  
A Kobata ◽  
H Ohbayashi ◽  
...  

2006 ◽  
Vol 75 (2) ◽  
pp. 932-940 ◽  
Author(s):  
Forough L. Nowrouzian ◽  
Vanda Friman ◽  
Ingegerd Adlerberth ◽  
Agnes E. Wold

ABSTRACT The mannose-specific adhesin of type 1 fimbriae is the most common adhesin in Escherichia coli. One receptor for this adhesin is the carbohydrate chains of secretory immunoglobulin A (S-IgA), and intestinal E. coli from IgA-deficient individuals has a reduced capacity to adhere to mannose-containing receptors. Here, we investigated the expression of the mannose-specific adhesin and its capacity to switch to the fimbriated phenotype in colonic resident and transient E. coli strains isolated from control (n = 16) and IgA-deficient (n = 17) persons. Resident E. coli strains from IgA-deficient individuals displayed weaker mannose-specific adherence to colonic cells than resident strains from control individuals (21 versus 44 bacteria/cell, P = 0.0009) due to three mechanisms: a lower carriage rate of the fimH gene (90% versus 97%, not significant), more frequent failure to switch on the fim genes (30% versus 6%, P = 0.02), and the reduced adhesive potential of fimH + isolates capable of phase switch (26 versus 46 bacteria/cell, P = 0.02). On the other hand, resident strains from IgA-deficient individuals displayed stronger mannose-resistant adherence than resident strains from control individuals (P = 0.04) and transient strains from IgA-deficient individuals (P = 0.01). The presence of S-IgA appears to favor the establishment of E. coli clones which readily express mannose-specific adhesins in the bowel microbiota.


Sign in / Sign up

Export Citation Format

Share Document