secretory component
Recently Published Documents


TOTAL DOCUMENTS

542
(FIVE YEARS 29)

H-INDEX

53
(FIVE YEARS 2)

2021 ◽  
Vol 22 (23) ◽  
pp. 12776
Author(s):  
Shunli Pan ◽  
Noriyoshi Manabe ◽  
Yoshiki Yamaguchi

Immunoglobulin G (IgG) is currently the most studied immunoglobin class and is frequently used in antibody therapeutics in which its beneficial effector functions are exploited. IgG is composed of two heavy chains and two light chains, forming the basic antibody monomeric unit. In contrast, immunoglobulin A (IgA) and immunoglobulin M (IgM) are usually assembled into dimers or pentamers with the contribution of joining (J)-chains, which bind to the secretory component (SC) of the polymeric Ig receptor (pIgR) and are transported to the mucosal surface. IgA and IgM play a pivotal role in various immune responses, especially in mucosal immunity. Due to their structural complexity, 3D structural study of these molecules at atomic scale has been slow. With the emergence of cryo-EM and X-ray crystallographic techniques and the growing interest in the structure-function relationships of IgA and IgM, atomic-scale structural information on IgA-Fc and IgM-Fc has been accumulating. Here, we examine the 3D structures of IgA and IgM, including the J-chain and SC. Disulfide bridging and N-glycosylation on these molecules are also summarized. With the increasing information of structure–function relationships, IgA- and IgM-based monoclonal antibodies will be an effective option in the therapeutic field.


2021 ◽  
pp. 59-63
Author(s):  
Т. F. Kosyrevа ◽  
О. V. Voeykova ◽  
N. V. Golochalova

The purpose of work was the clinical laboratory research, identification of reaction of local immunity mucous a mouth, indicators of globulins fraction on carrying within 6 months of the removable orthodontic device from domestic light-cured polymer at children. Immunoglobulins of three classes IgM, IgG, IGA and calculated values of sIgA and sc (free secretory component) were investigated. Contents sekretorny IgA (sIgA) and a free secretory component (sc) is especially important. Results were estimated by V.V. Zverev’s technique et al. (2011) [6]. Results showed that immunoglobulins changed individually at each patient within one extent of dysbiotic disorders that is connected with an initial situation of a condition of oropharynx of the child which had no considerable fluctuations within one degree of a condition of a microbiota of a mucous oropharynx of the child. The bioinertness of Nolatek photopolymer in the form of basic material of the orthodontic device is established. Light-cured domestic nanostructural polymer has high quality of the operational properties in children’s practice of clinic of orthodontics conforming to modern requirements for bioinertness, an esthetics and functionality.


2021 ◽  
Author(s):  
Salma Sheikh Mohamed ◽  
Gary Y.C. Chao ◽  
Baweleta Isho ◽  
Michelle Zuo ◽  
George R. Nahass ◽  
...  

Vaccines against SARS-CoV-2 administered via the parenteral route (intra-muscular = i.m.) are effective at preventing COVID-19 in part by inducing neutralizing antibodies in the blood. The first line of defense against SARS-CoV-2 is in the upper respiratory tract, yet we know very little about whether COVID-19 vaccines induce immunity in this compartment, if at all. We analysed salivary antibodies against the SARS-CoV-2 Spike protein and its receptor binding domain (RBD) following 2 i.m. injections of either BNT162b2 or mRNA-1273 vaccines. Salivary anti-Spike/RBD IgG was detected after 1 dose and increased further after dose 2, reflecting the systemic immune response. Interestingly, salivary anti-Spike/RBD IgA associated with the secretory component (sIgA) was detected in nearly all vaccinated participants after one dose of mRNA vaccine, with anti-Spike sIgA diminishing after dose 2. Vaccination with ChAdOx1-S (Ad) followed by mRNA induced similar levels of salivary anti-Spike/RBD IgG and IgA, and both mRNA/mRNA and Ad/mRNA regimes provoked modest neutralizing capacity in this biofluid. Our results demonstrate that SARS-CoV-2 mRNA/mRNA and Ad/mRNA vaccination induces antibodies in the saliva, and in response to one dose of mRNA, a compartmentalized and transient antigen-specific sIgA response is generated that does not correlate with systemic immunity.


2021 ◽  
Author(s):  
Heidi E Drummer ◽  
Huy Van ◽  
Ethan Klock ◽  
Shuning Zheng ◽  
Zihui Wei ◽  
...  

Current tests for SARS-CoV-2 antibodies (IgG, IgM, IgA) cannot differentiate recent and past infections. We describe a point of care, lateral flow assay for SARS-CoV-2 dIgA based on the highly selective binding of dIgA to a chimeric form of secretory component (CSC), that distinguishes dIgA from monomeric IgA. Detection of specific dIgA uses a complex of biotinylated SARS-CoV-2 receptor binding domain and streptavidin-colloidal gold. SARS-CoV-2-specific dIgA was measured both in 112 cross-sectional samples and a longitudinal panel of 362 plasma samples from 45 patients with PCR-confirmed SARS-CoV-2 infection, and 193 discrete pre-COVID-19 or PCR-negative patient samples. The assay demonstrated 100% sensitivity from 11 days post-symptom onset, and a specificity of 98.2%. With an estimated half-life of 6.3 days, dIgA provides a unique biomarker for the detection of recent SARS-CoV-2 infections with potential to enhance diagnosis and management of COVID-19 at point-of-care.


Author(s):  
Kelly A. Dingess ◽  
Pauline van Dam ◽  
Jing Zhu ◽  
Marko Mank ◽  
Karen Knipping ◽  
...  

AbstractImmunoglobulins are the primary protective products in human milk and are responsible for transferring maternal pathogen memory to the infant, providing protection by binding to recognized pathogens and inhibiting virulence. To better understand potentially protective/anti-infective compounds in human milk, the establishment of human milk–tailored analytical approaches is crucial, as most contemporary analytical methods have been optimized for plasma or serum. One of the most prominent immunoglobulins in human milk is secretory immunoglobulin A (sIgA), which may be relevant for the protection of breastfed infants from harmful pathogens. Advanced sIgA detection methods can help monitor the immune status and development of the mother-infant dyad. We therefore developed an enzyme-linked immunosorbent assay (ELISA) sIgA method for the quantitative analysis of IgA plus secretory component (SC), validated with sIgA standards and substantiated by mass spectrometry (MS)–based proteomics. A very strong correlation was observed between the MS-detected IgA1 and the human milk–specific sIgA ELISA (r = 0.82). Overall, the MS data indicate that the developed human milk sIgA ELISA does not differentiate between sIgA1 and sIgA2 and is, therefore, a reflection of total sIgA. Furthermore, our MS data and the human milk–derived sIgA ELISA data are better correlated than data derived from a standard serum IgA ELISA kit (relative to MS IgA1 r = 0.82 and r = 0.42, respectively). We therefore propose our human milk–specific sIgA ELISA as an ideal quantitative indicator of total sIgA with advantages over current serum IgA ELISA kits.


2021 ◽  
Vol 39 (1) ◽  
pp. 695-718
Author(s):  
Timothy W. Hand ◽  
Andrea Reboldi

Among antibodies, IgA is unique because it has evolved to be secreted onto mucosal surfaces. The structure of IgA and the associated secretory component allow IgA to survive the highly proteolytic environment of mucosal surfaces but also substantially limit IgA's ability to activate effector functions on immune cells. Despite these characteristics, IgA is critical for both preventing enteric infections and shaping the local microbiome. IgA's function is determined by a distinct antigen-binding repertoire, composed of antibodies with a variety of specificities, from permissive polyspecificity to cross-reactivity to exquisite specificity to a single epitope, which act together to regulate intestinal bacteria. Development of the unique function and specificities of IgA is shaped by local cues provided by the gut-associated lymphoid tissue, driven by the constantly changing environment of the intestine and microbiota.


Author(s):  
Katsuhiro Nakanishi ◽  
Noriko Mogi ◽  
Yuki Kikuchi ◽  
Minami Matsuda ◽  
Takeshi Matsuoka ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Adam Chin-Fatt ◽  
Reza Saberianfar ◽  
Rima Menassa

We previously isolated a single domain antibody (VHH) that binds Enterohemorrhagic Escherichia coli (EHEC) with the end-goal being the enteromucosal passive immunization of cattle herds. To improve the yield of a chimeric fusion of the VHH with an IgA Fc, we employed two rational design strategies, supercharging and introducing de novo disulfide bonds, on the bovine IgA Fc component of the chimera. After mutagenizing the Fc, we screened for accumulation levels after transient transformation in Nicotiana benthamiana leaves. We identified and characterized five supercharging and one disulfide mutant, termed ‘(5 + 1)Fc’, that improve accumulation in comparison to the native Fc. Combining all these mutations is associated with a 32-fold increase of accumulation for the Fc alone, from 23.9 mg/kg fresh weight (FW) to 599.5 mg/kg FW, as well as a twenty-fold increase when fused to a VHH that binds EHEC, from 12.5 mg/kg FW tissue to 236.2 mg/kg FW. Co-expression of native or mutated VHH-Fc with bovine joining chain (JC) and bovine secretory component (SC) followed by co-immunoprecipitation suggests that the stabilizing mutations do not interfere with the capacity of VHH-Fc to assemble with JC and FC into a secretory IgA. Both the native and the mutated VHH-Fc similarly neutralized the ability of four of the seven most prevalent EHEC strains (O157:H7, O26:H11, O111:Hnm, O145:Hnm, O45:H2, O121:H19 and O103:H2), to adhere to HEp-2 cells as visualized by immunofluorescence microscopy and quantified by fluorometry. These results collectively suggest that supercharging and disulfide bond tethering on a Fc chain can effectively improve accumulation of a VHH-Fc fusion without impacting VHH functionality.


Sign in / Sign up

Export Citation Format

Share Document