scholarly journals Phase-Variable Genotypes Sweetened by Glycosylation Phenotypes

2018 ◽  
Vol 200 (16) ◽  
Author(s):  
Nathan J. Weyand

ABSTRACT The affordability of bacterial genome sequencing has provided a helpful tool for sequencing large strain collections. Bente Børud (J. Bacteriol. 200:e00794-17, 2018, https://doi.org/doi:10.1128/JB.00794-17) recently led an effort to analyze the genomes of a collection of oropharyngeal Neisseria meningitidis isolates from 50 healthy individuals. Paired longitudinal isolates from each individual were sequenced. Genome analyses focused on (i) predicting the expression state of phase-variable loci that encode enzymes important for O-linked protein glycosylation and (ii) correlating specific genotypes with glycosylation phenotypes.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Thomas M. Elliott ◽  
Xing J. Lee ◽  
Anna Foeglein ◽  
Patrick N. Harris ◽  
Louisa G. Gordon

2018 ◽  
Vol 200 (16) ◽  
Author(s):  
Bente Børud ◽  
Guro K. Bårnes ◽  
Ola Brønstad Brynildsrud ◽  
Elisabeth Fritzsønn ◽  
Dominique A. Caugant

ABSTRACTSpecies within the genusNeisseriadisplay significant glycan diversity associated with theO-linked protein glycosylation (pgl) systems due to phase variation and polymorphic genes and gene content. The aim of this study was to examine in detail thepglgenotype and glycosylation phenotype in meningococcal isolates and the changes occurring during short-term asymptomatic carriage. Paired meningococcal isolates derived from 50 asymptomatic meningococcal carriers, taken about 2 months apart, were analyzed with whole-genome sequencing. TheO-linked protein glycosylation genes were characterized in detail using the Genome Comparator tool at the https://pubmlst.org/ database. Immunoblotting with glycan-specific antibodies (Abs) was used to investigate the protein glycosylation phenotype. All majorpgllocus polymorphisms identified inNeisseria meningitidisto date were present in our isolate collection, with the variable presence ofpglGandpglH, both in combination with eitherpglBorpglB2. We identified significant changes and diversity in thepglgenotype and/or glycan phenotype in 96% of the paired isolates. There was also a high degree of glycan microheterogeneity, in which different variants of glycan structures were found at a given glycoprotein. The main mechanism responsible for the observed differences was phase-variable expression of the involved glycosyltransferases and theO-acetyltransferase. To our knowledge, this is the first characterization of thepglgenotype and glycosylation phenotype in a larger strain collection. This report thus provides important insight into glycan diversity inN. meningitidisand into the phase variability changes that influence the expressed glycoform repertoire during meningococcal carriage.IMPORTANCEBacterial meningitis is a serious global health problem, and one of the major causative organisms isNeisseria meningitidis, which is also a common commensal in the upper respiratory tract of healthy humans. In bacteria, numerous loci involved in biosynthesis of surface-exposed antigenic structures that are involved in the interaction between bacteria and host are frequently subjected to homologous recombination and phase variation. These mechanisms are well described inNeisseria, and phase variation provides the ability to change these structures reversibly in response to the environment. Protein glycosylation systems are becoming widely identified in bacteria, and yet little is known about the mechanisms and evolutionary forces influencing glycan composition during carriage and disease.


2008 ◽  
Vol 18 (5) ◽  
pp. 802-809 ◽  
Author(s):  
D. Hernandez ◽  
P. Francois ◽  
L. Farinelli ◽  
M. Osteras ◽  
J. Schrenzel

Sign in / Sign up

Export Citation Format

Share Document