scholarly journals Provirus Induction in Hyperthermophilic Archaea: Characterization of Aeropyrum pernix Spindle-Shaped Virus 1 and Aeropyrum pernix Ovoid Virus 1

2011 ◽  
Vol 193 (19) ◽  
pp. 5412-5419 ◽  
Author(s):  
T. Mochizuki ◽  
Y. Sako ◽  
D. Prangishvili
Author(s):  
Ryushi Kawakami ◽  
Chinatsu Kinoshita ◽  
Tomoki Kawase ◽  
Mikio Sato ◽  
Junji Hayashi ◽  
...  

Abstract The amino acid sequence of the OCC_10945 gene product from the hyperthermophilic archaeon Thermococcus litoralis DSM5473, originally annotated as γ-aminobutyrate aminotransferase, is highly similar to that of the uncharacterized pyridoxal 5ʹ-phosphate (PLP)-dependent amino acid racemase from Pyrococcus horikoshii. The OCC_10945 enzyme was successfully overexpressed in Escherichia coli by co-expression with a chaperone protein. The purified enzyme demonstrated PLP-dependent amino acid racemase activity primarily toward Met and Leu. Although PLP contributed to enzyme stability, it only loosely bound to this enzyme. Enzyme activity was strongly inhibited by several metal ions, including Co2+ and Zn2+, and non-substrate amino acids such as l-Arg and l-Lys. These results suggest that the underlying PLP-binding and substrate recognition mechanisms in this enzyme are significantly different from those of the other archaeal and bacterial amino acid racemases. This is the first description of a novel PLP-dependent amino acid racemase with moderate substrate specificity in hyperthermophilic archaea.


2001 ◽  
Vol 1 (1) ◽  
pp. 117-118 ◽  
Author(s):  
J. Yokozawa ◽  
Y. Nagaoka ◽  
T. Umehara ◽  
J. Iwaki ◽  
Y. Kawarabayasi ◽  
...  

2004 ◽  
Vol 186 (6) ◽  
pp. 1614-1619 ◽  
Author(s):  
Joanne M. Santini ◽  
Rachel N. vanden Hoven

ABSTRACT The chemolithoautotroph NT-26 oxidizes arsenite to arsenate by using a periplasmic arsenite oxidase. Purification and preliminary characterization of the enzyme revealed that it (i) contains two heterologous subunits, AroA (98 kDa) and AroB (14 kDa); (ii) has a native molecular mass of 219 kDa, suggesting an α2β2 configuration; and (iii) contains two molybdenum and 9 or 10 iron atoms per α2β2 unit. The genes that encode the enzyme have been cloned and sequenced. Sequence analyses revealed similarities to the arsenite oxidase of Alcaligenes faecalis, the putative arsenite oxidase of the beta-proteobacterium ULPAs1, and putative proteins of Aeropyrum pernix, Sulfolobus tokodaii, and Chloroflexus aurantiacus. Interestingly, the AroA subunit was found to be similar to the molybdenum-containing subunits of enzymes in the dimethyl sulfoxide reductase family, whereas the AroB subunit was found to be similar to the Rieske iron-sulfur proteins of cytochrome bc 1 and b 6 f complexes. The NT-26 arsenite oxidase is probably exported to the periplasm via the Tat secretory pathway, with the AroB leader sequence used for export. Confirmation that NT-26 obtains energy from the oxidation of arsenite was obtained, as an aroA mutant was unable to grow chemolithoautotrophically with arsenite. This mutant could grow heterotrophically in the presence of arsenite; however, the arsenite was not oxidized to arsenate.


DNA Research ◽  
2006 ◽  
Vol 12 (6) ◽  
pp. 403-416 ◽  
Author(s):  
S. Yamazaki ◽  
H. Kikuchi ◽  
Y. Kawarabayasi
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Galina Slobodkina ◽  
Maxime Allioux ◽  
Alexander Merkel ◽  
Marie-Anne Cambon-Bonavita ◽  
Karine Alain ◽  
...  

Hyperthermophilic archaea of the genus Archaeoglobus are the subject of many fundamental and biotechnological researches. Despite their significance, the class Archaeoglobi is currently represented by only eight species obtained as axenic cultures and taxonomically characterized. Here, we report the isolation and characterization of a new species of Archaeoglobus from a deep-sea hydrothermal vent (Mid-Atlantic Ridge, TAG) for which the name Archaeoglobus neptunius sp. nov. is proposed. The type strain is SE56T (=DSM 110954T = VKM B-3474T). The cells of the novel isolate are motile irregular cocci growing at 50–85°C, pH 5.5–7.5, and NaCl concentrations of 1.5–4.5% (w/v). Strain SE56T grows lithoautotrophically with H2 as an electron donor, sulfite or thiosulfate as an electron acceptor, and CO2/HCO3− as a carbon source. It is also capable of chemoorganotrophic growth by reduction of sulfate, sulfite, or thiosulfate. The genome of the new isolate consists of a 2,115,826 bp chromosome with an overall G + C content of 46.0 mol%. The whole-genome annotation confirms the key metabolic features of the novel isolate demonstrated experimentally. Genome contains a complete set of genes involved in CO2 fixation via reductive acetyl-CoA pathway, gluconeogenesis, hydrogen and fatty acids oxidation, sulfate reduction, and flagellar motility. The phylogenomic reconstruction based on 122 conserved single-copy archaeal proteins supported by average nucleotide identity (ANI), average amino acid identity (AAI), and alignment fraction (AF) values, indicates a polyphyletic origin of the species currently included into the genus Archaeoglobus, warranting its reclassification.


Sign in / Sign up

Export Citation Format

Share Document