chaperone protein
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 67)

H-INDEX

48
(FIVE YEARS 5)

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1653
Author(s):  
Mengxin Li ◽  
Yalong Cong ◽  
Yifei Qi ◽  
John Z. H. Zhang

Under the oxidative stress condition, the small RNA (sRNA) OxyS that acts as essential post-transcriptional regulators of gene expression is produced and plays a regulatory function with the assistance of the RNA chaperone Hfq protein. Interestingly, experimental studies found that the N48A mutation of Hfq protein could enhance the binding affinity with OxyS while resulting in the defection of gene regulation. However, how the Hfq protein interacts with sRNA OxyS and the origin of the stronger affinity of N48A mutation are both unclear. In this paper, molecular dynamics (MD) simulations were performed on the complex structure of Hfq and OxyS to explore their binding mechanism. The molecular mechanics generalized born surface area (MM/GBSA) and interaction entropy (IE) method were combined to calculate the binding free energy between Hfq and OxyS sRNA, and the computational result was correlated with the experimental result. Per-residue decomposition of the binding free energy revealed that the enhanced binding ability of the N48A mutation mainly came from the increased van der Waals interactions (vdW). This research explored the binding mechanism between Oxys and chaperone protein Hfq and revealed the origin of the strong binding affinity of N48A mutation. The results provided important insights into the mechanism of gene expression regulation affected by protein mutations.


2021 ◽  
Author(s):  
Iris Lindberg ◽  
Zhan Shu ◽  
Hoa Lam ◽  
Michael Helwig ◽  
Nur Yucer ◽  
...  

ABSTRACTParkinson’s disease is a devastating motor disorder involving the aberrant aggregation of the synaptic protein synuclein (aSyn) and degeneration of the nigrostriatal dopaminergic tract. We previously showed that proSAAS, a small secreted chaperone protein widely expressed in neurons within the brain, is able to block aSyn-induced dopaminergic cytotoxicity in primary nigral neuron cultures. We show here that coinjection of proSAAS-encoding lentivirus profoundly reduced the motor asymmetry caused by unilateral nigral AAV-mediated human aSyn overexpression. This positive functional outcome was accompanied by significant amelioration of the human aSyn-induced loss of both nigral tyrosine hydroxylase-positive cells and striatal tyrosine hydroxylase-positive terminals, demonstrating clear proSAAS-mediated protection of the nigro-striatal tract. ProSAAS overexpression also reduced the content of human aSyn protein in both the nigra and striatum and reduced the loss of tyrosine hydroxylase protein in both regions. Since proSAAS is a secreted protein, we tested the possibility that proSAAS is able to block the transsynaptic spread of aSyn from the periphery to the central nervous system, increasingly recognized as a potentially significant pathological mechanism. The number of human aSyn-positive neurites in the pons and caudal midbrain of mice following administration of human aSyn-encoding AAV into the vagus nerve was considerably reduced in mice coinjected with proSAAS-encoding AAV, supporting proSAAS-mediated blockade of transsynaptic aSyn transmission. We suggest that proSAAS may represent a promising target for therapeutic development in Parkinson’s disease.SignificanceThis paper describes two independent avenues of research that both provide support for the in vivo neuroprotective function of this small chaperone protein. In the first approach, we show that proSAAS overexpression provides remarkably effective protection against dopaminergic neurotoxicity in a rat model of Parkinson’s disease. This conclusion is supported both by three independent assays of motor function as well as by quantitative analysis of surviving dopaminergic neurons in brain areas involved in the control of motor function. In the second line of research, we show that in mice, the spread of human synuclein across synapses can be blunted by proSAAS overexpression.


2021 ◽  
Vol 22 (19) ◽  
pp. 10317
Author(s):  
Bereket Birbo ◽  
Elechi E. Madu ◽  
Chikezie O. Madu ◽  
Aayush Jain ◽  
Yi Lu

HSP90 is a vital chaperone protein conserved across all organisms. As a chaperone protein, it correctly folds client proteins. Structurally, this protein is a dimer with monomer subunits that consist of three main conserved domains known as the N-terminal domain, middle domain, and the C-terminal domain. Multiple isoforms of HSP90 exist, and these isoforms share high homology. These isoforms are present both within the cell and outside the cell. Isoforms HSP90α and HSP90β are present in the cytoplasm; TRAP1 is present in the mitochondria; and GRP94 is present in the endoplasmic reticulum and is likely secreted due to post-translational modifications (PTM). HSP90 is also secreted into an extracellular environment via an exosome pathway that differs from the classic secretion pathway. Various co-chaperones are necessary for HSP90 to function. Elevated levels of HSP90 have been observed in patients with cancer. Despite this observation, the possible role of HSP90 in cancer was overlooked because the chaperone was also present in extreme amounts in normal cells and was vital to normal cell function, as observed when the drastic adverse effects resulting from gene knockout inhibited the production of this protein. Differences between normal HSP90 and HSP90 of the tumor phenotype have been better understood and have aided in making the chaperone protein a target for cancer drugs. One difference is in the conformation: HSP90 of the tumor phenotype is more susceptible to inhibitors. Since overexpression of HSP90 is a factor in tumorigenesis, HSP90 inhibitors have been studied to combat the adverse effects of HSP90 overexpression. Monotherapies using HSP90 inhibitors have shown some success; however, combination therapies have shown better results and are thus being studied for a more effective cancer treatment.


Author(s):  
Mengxin Li ◽  
Yalong Cong ◽  
Yifei Qi ◽  
John Z.H. Zhang

Under the oxidative stress condition, the small RNA (sRNA) Oxys that acts as essential post-transcriptional regulators of gene expression is produced and plays a regulatory function with the assistance of the RNA chaperone Hfq protein. Interestingly, experimental studies found that the N48A mutation of Hfq protein could enhance the binding affinity with OxyS while resulting in defection of gene regulation. But, how the Hfq protein interacts with sRNA Oxys and the origin of the stronger affinity of N48A mutation are both unclear. In this paper, molecular dynamics (MD) simulations were performed on the complex structure of Hfq and OxyS to explore their binding mechanism. The molecular mechanics generalized Born surface area (MM/GBSA) and interaction entropy (IE) method were combined to calculate the binding free energy between Hfq and OxyS sRNA, and the computational result is in excellent correlation with the experimental result. Per-residue decomposition of the binding free energy revealed that the enhanced binding ability of the N48A mutation mainly comes from the increased van der Waals interactions (vdW). This research explores the binding mechanism between Oxys and chaperone protein Hfq, and revealed the origin of the strong binding affinity of N48A mutation. The results provided important insights on the mechanism of gene expression regulation affected by protein mutations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Markus G. Klammer ◽  
Omar Dzaye ◽  
Thomas Wallach ◽  
Christina Krüger ◽  
Dorothea Gaessler ◽  
...  

The chaperone protein Unc-93 homolog B1 (UNC93B1) regulates internalization, trafficking, and stabilization of nucleic acid-sensing Toll-like receptors (TLR) in peripheral immune cells. We sought to determine UNC93B1 expression and its functional relevance in inflammatory and injurious processes in the central nervous system (CNS). We found that UNC93B1 is expressed in various CNS cells including microglia, astrocytes, oligodendrocytes, and neurons, as assessed by PCR, immunocyto-/histochemistry, and flow cytometry. UNC93B1 expression in the murine brain increased during development. Exposure to the microRNA let-7b, a recently discovered endogenous TLR7 activator, but also to TLR3 and TLR4 agonists, led to increased UNC93B1 expression in microglia and neurons. Microglial activation by extracellular let-7b required functional UNC93B1, as assessed by TNF ELISA. Neuronal injury induced by extracellular let-7b was dependent on UNC93B1, as UNC93B1-deficient neurons were unaffected by the microRNA’s neurotoxicity in vitro. Intrathecal application of let-7b triggered neurodegeneration in wild-type mice, whereas mice deficient for UNC93B1 were protected against injurious effects on neurons and axons. In summary, our data demonstrate broad UNC93B1 expression in the murine brain and establish this chaperone as a modulator of neuroinflammation and neuronal injury triggered by extracellular microRNA and subsequent induction of TLR signaling.


2021 ◽  
Author(s):  
Ee-Hong Tam ◽  
Yen-Chin Liu ◽  
Chian-Huey Woung ◽  
Helene Minyi Liu ◽  
Guan-Hong Wu ◽  
...  

The NS1 protein of the influenza A virus plays a critical role in regulating several biological processes in cells, including the type I interferon (IFN) response. We previously profiled the cellular factors that interact with the NS1 protein of influenza A virus and found that the NS1 protein interacts with proteins involved in RNA splicing/processing, cell cycle regulation, and protein targeting processes, including 14-3-3ε. Since 14-3-3ε plays an important role in RIG-I translocation to MAVS to activate type I IFN expression, the interaction of the NS1 and 14-3-3ε proteins may prevent the RIG-I-mediated IFN response. In this study, we confirmed that the 14-3-3ε protein interacts with the N-terminal domain of the NS1 protein and that the NS1 protein inhibits RIG-I-mediated IFN-β promoter activation in 14-3-3ε-overexpressing cells. In addition, our results showed that knocking down 14-3-3ε can reduce IFN-β expression elicited by influenza A virus and enhance viral replication. Furthermore, we found that threonine in the 49 th amino acid position of the NS1 protein plays a role in the interaction with 14-3-3ε. Influenza A virus expressing C-terminus-truncated NS1 with T49A mutation dramatically increases IFN-β mRNA in infected cells and causes slower replication than that of virus without the T-to-A mutation. Collectively, this study demonstrates that 14-3-3ε is involved in influenza A virus-initiated IFN-β expression and that the interaction of the NS1 protein and 14-3-3ε may be one of the mechanisms for inhibiting type I IFN activation during influenza A virus infection. IMPORTANCE Influenza A virus is an important human pathogen causing severe respiratory disease. The virus has evolved several strategies to dysregulate the innate immune response and facilitate its replication. We demonstrate that the NS1 protein of influenza A virus interacts with the cellular chaperone protein 14-3-3ε, which plays a critical role in RIG-I translocation that induces type I IFN expression, and that NS1 protein prevents RIG-I translocation to mitochondrial membrane. The interaction site for 14-3-3ε is the RNA-binding domain (RBD) of the NS1 protein. Therefore, this research elucidates a novel mechanism by which the NS1 RBD mediates IFN-β suppression to facilitate influenza A viral replication. Additionally, the findings reveal the antiviral role of 14-3-3ε during influenza A virus infection.


Antibodies ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 31
Author(s):  
Ann Christina Bergmann ◽  
Cecilie Kyllesbech ◽  
Rimantas Slibinskas ◽  
Evaldas Ciplys ◽  
Peter Højrup ◽  
...  

Calreticulin is a chaperone protein, which is associated with myeloproliferative diseases. In this study, we used resin-bound peptides to characterize two monoclonal antibodies (mAbs) directed to calreticulin, mAb FMC 75 and mAb 16, which both have significantly contributed to understanding the biological function of calreticulin. The antigenicity of the resin-bound peptides was determined by modified enzyme-linked immunosorbent assay. Specific binding was determined to an 8-mer epitope located in the N-terminal (amino acids 34–41) and to a 12-mer peptide located in the C-terminal (amino acids 362–373). Using truncated peptides, the epitopes were identified as TSRWIESK and DEEQRLKEEED for mAb FMC 75 and mAb 16, respectively, where, especially the charged amino acids, were found to have a central role for a stable binding. Further studies indicated that the epitope of mAb FMC 75 is assessable in the oligomeric structure of calreticulin, making this epitope a potential therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document