scholarly journals Examination of the Role of DNA Polymerase Proofreading in the Mutator Effect of Miscoding tRNAs

1998 ◽  
Vol 180 (21) ◽  
pp. 5712-5717 ◽  
Author(s):  
Malgorzata M. Slupska ◽  
Angela G. King ◽  
Louise I. Lu ◽  
Rose H. Lin ◽  
Emily F. Mao ◽  
...  

ABSTRACT We previously described Escherichia coli mutator tRNAs that insert glycine in place of aspartic acid and postulated that the elevated mutation rate results from generating a mutator polymerase. We suggested that the proofreading subunit of polymerase III, ɛ, is a likely target for the aspartic acid-to-glycine change that leads to a lowered fidelity of replication, since the altered ɛ subunits resulting from this substitution (approximately 1% of the time) are sufficient to create a mutator effect, based on several observations of mutDalleles. In the present work, we extended the study of specificmutD alleles and constructed 16 altered mutDgenes by replacing each aspartic acid codon, in series, with a glycine codon in the dnaQ gene that encodes ɛ. We show that three of these genes confer a strong mutator effect. We have also looked for new mutator tRNAs and have found one: a glycine tRNA that inserts glycine at histidine codons. We then replaced each of the seven histidine codons in the mutD gene with glycine codons and found that in two cases, a strong mutator phenotype results. These findings are consistent with the ɛ subunit playing a major role in the mutator effect of misreading tRNAs.

2005 ◽  
Vol 187 (19) ◽  
pp. 6862-6866 ◽  
Author(s):  
Wojciech Kuban ◽  
Magdalena Banach-Orlowska ◽  
Malgorzata Bialoskorska ◽  
Aleksandra Lipowska ◽  
Roel M. Schaaper ◽  
...  

ABSTRACT We investigated the mutator effect resulting from overproduction of Escherichia coli DNA polymerase IV. Using lac mutational targets in the two possible orientations on the chromosome, we observed preferential mutagenesis during lagging strand synthesis. The mutator activity likely results from extension of mismatches produced by polymerase III holoenzyme.


2006 ◽  
Vol 188 (22) ◽  
pp. 7977-7980 ◽  
Author(s):  
Wojciech Kuban ◽  
Magdalena Banach-Orlowska ◽  
Roel M. Schaaper ◽  
Piotr Jonczyk ◽  
Iwona J. Fijalkowska

ABSTRACT Constitutive expression of the SOS regulon in Escherichia coli recA730 strains leads to a mutator phenotype (SOS mutator) that is dependent on DNA polymerase V (umuDC gene product). Here we show that a significant fraction of this effect also requires DNA polymerase IV (dinB gene product).


1984 ◽  
Vol 259 (9) ◽  
pp. 5567-5573
Author(s):  
R DiFrancesco ◽  
S K Bhatnagar ◽  
A Brown ◽  
M J Bessman

Genetics ◽  
1993 ◽  
Vol 134 (4) ◽  
pp. 1039-1044 ◽  
Author(s):  
I J Fijalkowska ◽  
R M Schaaper

Abstract The dnaE gene of Escherichia coli encodes the DNA polymerase (alpha subunit) of the main replicative enzyme, DNA polymerase III holoenzyme. We have previously identified this gene as the site of a series of seven antimutator mutations that specifically decrease the level of DNA replication errors. Here we report the nucleotide sequence changes in each of the different antimutator dnaE alleles. For each a single, but different, amino acid substitution was found among the 1,160 amino acids of the protein. The observed substitutions are generally nonconservative. All affected residues are located in the central one-third of the protein. Some insight into the function of the regions of polymerase III containing the affected residues was obtained by amino acid alignment with other DNA polymerases. We followed the principles developed in 1990 by M. Delarue et al. who have identified in DNA polymerases from a large number of prokaryotic and eukaryotic sources three highly conserved sequence motifs, which are suggested to contain components of the polymerase active site. We succeeded in finding these three conserved motifs in polymerase III as well. However, none of the amino acid substitutions responsible for the antimutator phenotype occurred at these sites. This and other observations suggest that the effect of these mutations may be exerted indirectly through effects on polymerase conformation and/or DNA/polymerase interactions.


Sign in / Sign up

Export Citation Format

Share Document