scholarly journals Characterization of the Class 3 Integron and the Site-Specific Recombination System It Determines

2002 ◽  
Vol 184 (11) ◽  
pp. 3017-3026 ◽  
Author(s):  
Christina M. Collis ◽  
Mi-Jurng Kim ◽  
Sally R. Partridge ◽  
H. W. Stokes ◽  
Ruth M. Hall

ABSTRACT Integrons capture gene cassettes by using a site-specific recombination mechanism. As only one class of integron and integron-determined site-specific recombination system has been studied in detail, the properties of a second class, the only known class 3 integron, were examined. The configuration of the three potentially definitive features of integrons, the intI3 gene, the adjacent attI3 recombination site, and the Pc promoter that directs transcription of the cassettes, was similar to that found in the corresponding region (5′ conserved segment) of class 1 integrons. The integron features are flanked by a copy of the terminal inverted repeat, IRi, from class 1 integrons on one side and a resolvase-encoding tniR gene on the other, suggesting that they are part of a transposable element related to Tn402 but with the integron module in the opposite orientation. The IntI3 integrase was active and able to recognize and recombine both known types of IntI-specific recombination sites, the attI3 site in the integron, and different cassette-associated 59-be (59-base element) sites. Both integration of circularized cassettes into the attI3 site and excision of integrated cassettes were also catalyzed by IntI3. The attI3 site was localized to a short region adjacent to the intI3 gene. Recombination between a 59-be and secondary sites was also catalyzed by IntI3, but at frequencies significantly lower than observed with IntI1, the class 1 integron integrase.

2008 ◽  
Vol 190 (19) ◽  
pp. 6392-6397 ◽  
Author(s):  
Lin Zhang ◽  
Xijun Ou ◽  
Guoping Zhao ◽  
Xiaoming Ding

ABSTRACT The Streptomyces phage φBT1 encodes a site-specific integrase of the large serine recombinase subfamily. In this report, the enzymatic activity of the φBT1 integrase was characterized in vitro. We showed that this integrase has efficient integration activity with substrate DNAs containing attB and attP sites, independent of DNA supercoiling or cofactors. Both intra- and intermolecular recombinations proceed with rapid kinetics. The recombination is highly specific, and no reactions are observed between pairs of sites including attB and attL, attB and attR, attP and attL, or attP and attR or between two identical att sequences; however, a low but significant frequency of excision recombination between attL and attR is observed in the presence of the φBT1 integrase alone. In addition, for efficient integration, the minimal sizes of attB and attP are 36 bp and 48 bp, respectively. This site-specific recombination system is efficient and simple to use; thus, it could have applications for the manipulation of DNA in vitro.


1998 ◽  
Vol 8 (11) ◽  
pp. 665-672 ◽  
Author(s):  
Dawn L. Zinyk ◽  
Eric H. Mercer ◽  
Esther Harris ◽  
David J. Anderson ◽  
Alexandra L. Joyner

1987 ◽  
Vol 7 (6) ◽  
pp. 2087-2096
Author(s):  
B Sauer

The procaryotic cre-lox site-specific recombination system of coliphage P1 was shown to function in an efficient manner in a eucaryote, the yeast Saccharomyces cerevisiae. The cre gene, which codes for a site-specific recombinase, was placed under control of the yeast GALI promoter. lox sites flanking the LEU2 gene were integrated into two different chromosomes in both orientations. Excisive recombination at the lox sites (as measured by loss of the LEU2 gene) was promoted efficiently and accurately by the Cre protein and was dependent upon induction by galactose. These results demonstrate that a procaryotic recombinase can enter a eucaryotic nucleus and, moreover, that the ability of the Cre recombinase to perform precise recombination events on the chromosomes of S. cerevisiae is unimpaired by chromatin structure.


1987 ◽  
Vol 7 (6) ◽  
pp. 2087-2096 ◽  
Author(s):  
B Sauer

The procaryotic cre-lox site-specific recombination system of coliphage P1 was shown to function in an efficient manner in a eucaryote, the yeast Saccharomyces cerevisiae. The cre gene, which codes for a site-specific recombinase, was placed under control of the yeast GALI promoter. lox sites flanking the LEU2 gene were integrated into two different chromosomes in both orientations. Excisive recombination at the lox sites (as measured by loss of the LEU2 gene) was promoted efficiently and accurately by the Cre protein and was dependent upon induction by galactose. These results demonstrate that a procaryotic recombinase can enter a eucaryotic nucleus and, moreover, that the ability of the Cre recombinase to perform precise recombination events on the chromosomes of S. cerevisiae is unimpaired by chromatin structure.


Sign in / Sign up

Export Citation Format

Share Document