colonization factor
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 27)

H-INDEX

51
(FIVE YEARS 3)

2021 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Hicham Bessaiah ◽  
Carole Anamalé ◽  
Jacqueline Sung ◽  
Charles M. Dozois

Pathogens are exposed to a multitude of harmful conditions imposed by the environment of the host. Bacterial responses against these stresses are pivotal for successful host colonization and pathogenesis. In the case of many E. coli strains, type 1 fimbriae (pili) are an important colonization factor that can contribute to diseases such as urinary tract infections and neonatal meningitis. Production of type 1 fimbriae in E. coli is dependent on an invertible promoter element, fimS, which serves as a phase variation switch determining whether or not a bacterial cell will produce type 1 fimbriae. In this review, we present aspects of signaling and stress involved in mediating regulation of type 1 fimbriae in extraintestinal E. coli; in particular, how certain regulatory mechanisms, some of which are linked to stress response, can influence production of fimbriae and influence bacterial colonization and infection. We suggest that regulation of type 1 fimbriae is potentially linked to environmental stress responses, providing a perspective for how environmental cues in the host and bacterial stress response during infection both play an important role in regulating extraintestinal pathogenic E. coli colonization and virulence.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sarah Lauren Svensson ◽  
Cynthia Mira Sharma

Bacterial small RNAs (sRNAs) are important post-transcriptional regulators in stress responses and virulence. They can be derived from an expanding list of genomic contexts, such as processing from parental transcripts by RNase E. The role of RNase III in sRNA biogenesis is less well understood despite its well-known roles in rRNA processing, RNA decay, and cleavage of sRNA-mRNA duplexes. Here, we show that RNase III processes a pair of cis-encoded sRNAs (CJnc190 and CJnc180) of the foodborne pathogen Campylobacter jejuni. While CJnc180 processing by RNase III requires CJnc190, In contrast, RNase III processes CJnc190 independent of CJnc180 via cleavage of an intramolecular duplex. We also show that CJnc190 directly represses translation of the colonization factor PtmG by targeting a G-rich ribosome binding site, and uncover that CJnc180 is a cis-acting antagonist of CJnc190, indirectly affecting ptmG regulation. Our study highlights a role for RNase III in sRNA biogenesis and adds cis-encoded RNAs to the expanding diversity of transcripts that antagonize bacterial sRNAs.


2021 ◽  
Vol 7 (6) ◽  
Author(s):  
Moataz Abd El Ghany ◽  
Lars Barquist ◽  
Simon Clare ◽  
Cordelia Brandt ◽  
Matthew Mayho ◽  
...  

Enterotoxigenic Escherichia coli (ETEC) expressing the colonization pili CFA/I are common causes of diarrhoeal infections in humans. Here, we use a combination of transposon mutagenesis and transcriptomic analysis to identify genes and pathways that contribute to ETEC persistence in water environments and colonization of a mammalian host. ETEC persisting in water exhibit a distinct RNA expression profile from those growing in richer media. Multiple pathways were identified that contribute to water survival, including lipopolysaccharide biosynthesis and stress response regulons. The analysis also indicated that ETEC growing in vivo in mice encounter a bottleneck driving down the diversity of colonizing ETEC populations.


2021 ◽  
Author(s):  
Yoshihiko Tanimoto ◽  
Miyoko Inoue ◽  
Kana Komatsu ◽  
Atsuyuki Odani ◽  
Takayuki Wada ◽  
...  

Enterotoxigenic Escherichia coli (ETEC) strains that express various fimbrial or nonfimbrial colonization factors and enterotoxins are critical causes of diarrheal diseases. Human ETEC serotype O169:H41 (O169) has been a representative of epidemic ETEC worldwide; the organism shows massive adherence to HEp-2 cells similar to enteroaggregative E. coli. Previously, we determined the complete sequence of the unstable virulence plasmid, pEntYN10. The plasmid included a unique set of genes encoding a novel colonization factor (CF) resembling K88 (F4) of porcine ETEC, in addition to CS6, a well-known representative CF of human ETEC, and another novel CF similar to CS8 (CFA/III) of human ETEC. To determine whether the K88-like CF (after this, K88 O169) allows the organisms to infect domestic animals like the original K88-harboring strains that can cause diarrhea in piglets, samples were tested for antibodies against recombinant proteins of possible paralogous adhesins, FaeG1 and FaeG2, from K88O169 and the FaeG of typical K88 (F4). The seroepidemiological study using recombinant antigens (two paralogs FaeG1 and FaeG2 from K88O169) showed reactivity of porcine (18.0%) and bovine (17.1%) sera to K88O169 FaeG1 and/or FaeG2 antigens on indirect ELISA tests. These results suggest that E. coli with K88O169 adhesin can infect various hosts, including pigs and cattle. This is the first report of domestic animals having antibodies to K88O169 of human ETEC. Although human ETEC had been thought to be distinguished from those of domestic animals based on colonization factors, zoonotic strains may conceal themselves among human ETEC organisms. The concept of One Health should be adopted to intervene in ETEC infections among animals and humans.


2021 ◽  
Vol 96-97 ◽  
pp. S55
Author(s):  
Fabien Caillé ◽  
Thibaut Naninck ◽  
Charles Truillet ◽  
Bertrand Kuhnast ◽  
Catherine Chapon

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Ali Akgul ◽  
Massimo Maddaloni ◽  
Sang Mu Jun ◽  
Andrew S. Nelson ◽  
Vanessa Aguilera Odreman ◽  
...  

Abstract Background Sjögren’s syndrome (SjS), one of the most common autoimmune diseases, impacts millions of people annually. SjS results from autoimmune attack on exocrine (salivary and lacrimal) glands, and women are nine times more likely to be affected than men. To date, no vaccine or therapeutic exists to treat SjS, and patients must rely on lifelong therapies to alleviate symptoms. Methods Oral treatment with the adhesin from enterotoxigenic Escherichia coli colonization factor antigen I (CFA/I) fimbriae protects against several autoimmune diseases in an antigen (Ag)-independent manner. Lactococcus lactis, which was recently adapted to express CFA/I fimbriae (LL-CFA/I), effectively suppresses inflammation by the induction of infectious tolerance via Ag-specific regulatory T cells (Tregs), that produce IL-10 and TGF-β. To test the hypothesis that CFA/I fimbriae can offset the development of inflammatory T cells via Treg induction, oral treatments with LL-CFA/I were performed on the spontaneous, genetically defined model for SjS, C57BL/6.NOD-Aec1Aec2 mice to maintain salivary flow. Results Six-week (wk)-old C57BL/6.NOD-Aec1Aec2 mice were orally dosed with LL-CFA/I and treated every 3 wks; control groups were given L. lactis vector or PBS. LL-CFA/I-treated mice retained salivary flow up to 28 wks of age and showed significantly reduced incidence of inflammatory infiltration into the submandibular and lacrimal glands relative to PBS-treated mice. A significant increase in Foxp3+ and IL-10- and TGF-β-producing Tregs was observed. Moreover, LL-CFA/I significantly reduced the expression of proinflammatory cytokines, IL-6, IL-17, GM-CSF, and IFN-γ. Adoptive transfer of CD4+ T cells from LL-CFA/I-treated, not LL vector-treated mice, restored salivary flow in diseased SjS mice. Conclusion These data demonstrate that oral LL-CFA/I reduce or halts SjS progression, and these studies will provide the basis for future testing in SjS patients.


2021 ◽  
Author(s):  
Sarah L Svensson ◽  
Cynthia M. Sharma

Small RNAs (sRNAs) are emerging as important and diverse post-transcriptional gene expression regulators in bacterial stress responses and virulence. While originally identified mainly in intergenic regions, genome-wide approaches have revealed sRNAs encoded in diverse contexts, such as processed from parental transcripts by RNase E. Despite its well-known roles in rRNA processing, RNA decay, cleavage of sRNA-mRNA duplexes, the role of RNase III in sRNA biogenesis is less well understood. Here, we show that a pair of cis-encoded sRNAs (CJnc190 and CJnc180) are processed by RNase III in the foodborne pathogen Campylobacter jejuni. While CJnc180 processing requires CJnc190, RNase III cleaves an intramolecular duplex in CJnc190, independent of CJnc180. Moreover, we demonstrate that CJnc190 directly represses translation of the colonization factor PtmG by binding its G-rich ribosome binding site, and show that CJnc180 is a cis-acting antagonist of CJnc190, thereby indirectly affecting ptmG regulation. Our results expand the diversity of known genomic locations of bacterial sRNA sponges and highlight a role for bacterial RNase III that parallels miRNA processing by related eukaryotic Dicer and Drosha.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009414
Author(s):  
Aftab Nadeem ◽  
Athar Alam ◽  
Eric Toh ◽  
Si Lhyam Myint ◽  
Zia ur Rehman ◽  
...  

Vibrio cholerae is a noninvasive intestinal pathogen extensively studied as the causative agent of the human disease cholera. Our recent work identified MakA as a potent virulence factor of V. cholerae in both Caenorhabditis elegans and zebrafish, prompting us to investigate the potential contribution of MakA to pathogenesis also in mammalian hosts. In this study, we demonstrate that the MakA protein could induce autophagy and cytotoxicity of target cells. In addition, we observed that phosphatidic acid (PA)-mediated MakA-binding to the host cell plasma membranes promoted macropinocytosis resulting in the formation of an endomembrane-rich aggregate and vacuolation in intoxicated cells that lead to induction of autophagy and dysfunction of intracellular organelles. Moreover, we functionally characterized the molecular basis of the MakA interaction with PA and identified that the N-terminal domain of MakA is required for its binding to PA and thereby for cell toxicity. Furthermore, we observed that the ΔmakA mutant outcompeted the wild-type V. cholerae strain A1552 in the adult mouse infection model. Based on the findings revealing mechanistic insights into the dynamic process of MakA-induced autophagy and cytotoxicity we discuss the potential role played by the MakA protein during late stages of cholera infection as an anti-colonization factor.


2021 ◽  
Author(s):  
F. M. Kuhlmann ◽  
R. O. Laine ◽  
S Afrin ◽  
R Nakajima ◽  
M Akhtar ◽  
...  

Enterotoxigenic E. coli (ETEC) contribute significantly to the substantial burden of infectious diarrhea among children living in low and middle income countries. In the absence of a vaccine for ETEC, children succumb to acute dehydration as well as non-diarrheal sequelae related to these infections including malnutrition. The considerable diversity of ETEC genomes has complicated canonical vaccine development approaches defined by a subset of ETEC pathovar-specific antigens known as colonization factors (CFs). To identify additional conserved immunogens unique to this pathovar we employed an “open-aperture” approach to capture all potential conserved ETEC surface antigens in which we mined genomic sequences of 89 ETEC isolates, bioinformatically selected potential surface-exposed pathovar-specific antigens conserved in more than 40% of the genomes (n=118), and assembled the representative proteins onto microarrays, complemented with known or putative colonization factor subunit molecules (n=52), and toxin subunits. These arrays were then used to interrogate samples from individuals with acute symptomatic ETEC infections. Surprisingly, in this approach, we found that immune responses were largely constrained to a small number of antigens including individual colonization factor antigens and EtpA, an extracellular adhesin. In a Bangladeshi cohort of naturally infected children < 2 years of age, both EtpA and a second antigen, EatA, elicited significant serologic responses that were associated with protection from symptomatic illness. In addition, children infected with ETEC isolates bearing either etpA or eatA genes were significantly more likely to develop symptomatic disease. These studies support a role for antigens not presently targeted by vaccines (non-canonical) in virulence and the development of adaptive immune responses during ETEC infections. These findings that may inform vaccine design efforts to complement existing approaches.


Sign in / Sign up

Export Citation Format

Share Document