scholarly journals Transfer of the Symbiotic Plasmid of Rhizobium etli CFN42 Requires Cointegration with p42a, Which May Be Mediated by Site-Specific Recombination

2004 ◽  
Vol 186 (22) ◽  
pp. 7538-7548 ◽  
Author(s):  
Susana Brom ◽  
Lourdes Girard ◽  
Cristina Tun-Garrido ◽  
Alejandro García-de los Santos ◽  
Patricia Bustos ◽  
...  

ABSTRACT Plasmid p42a from Rhizobium etli CFN42 is self-transmissible and indispensable for conjugative transfer of the symbiotic plasmid (pSym). Most pSym transconjugants also inherit p42a. pSym transconjugants that lack p42a always contain recombinant pSyms, which we designated RpSyms*. RpSyms* do not contain some pSym segments and instead have p42a sequences, including the replication and transfer regions. These novel recombinant plasmids are compatible with wild-type pSym, incompatible with p42a, and self-transmissible. The symbiotic features of derivatives simultaneously containing a wild-type pSym and an RpSym* were analyzed. Structural analysis of 10 RpSyms* showed that 7 shared one of the two pSym-p42a junctions. Sequencing of this common junction revealed a 53-bp region that was 90% identical in pSym and p42a, including a 5-bp central region flanked by 9- to 11-bp inverted repeats reminiscent of bacterial and phage attachment sites. A gene encoding an integrase-like protein (intA) was localized downstream of the attachment site on p42a. Mutation or the absence of intA abolished pSym transfer from a recA mutant donor. Complementation with the wild-type intA gene restored transfer of pSym. We propose that pSym-p42a cointegration is required for pSym transfer; cointegration may be achieved either through homologous recombination among large reiterated sequences or through IntA-mediated site-specific recombination between the attachment sites. Cointegrates formed through the site-specific system but resolved through RecA-dependent recombination or vice versa generate RpSyms*. A site-specific recombination system for plasmid cointegration is a novel feature of these large plasmids and implies that there is unique regulation which affects the distribution of pSym in nature due to the role of the cointegrate in conjugative transfer.

2013 ◽  
Vol 195 (20) ◽  
pp. 4668-4677 ◽  
Author(s):  
R. Hernandez-Tamayo ◽  
C. Sohlenkamp ◽  
J. L. Puente ◽  
S. Brom ◽  
D. Romero

2006 ◽  
Vol 188 (9) ◽  
pp. 3409-3411 ◽  
Author(s):  
Edit Rutkai ◽  
Andrea György ◽  
László Dorgai ◽  
Robert A. Weisberg

ABSTRACT We previously proposed that lambdoid phages change their insertion specificity by adapting their integrases to sequences found in secondary attachment sites. To test this model, we quantified recombination between partners that carried sequences from secondary attachment sites catalyzed by wild-type and by mutant integrases with altered specificities. The results are consistent with the model, and indicate differential core site usage in excision and integration.


2012 ◽  
Vol 41 (2) ◽  
pp. e37-e37 ◽  
Author(s):  
Madina Karimova ◽  
Josephine Abi-Ghanem ◽  
Nicolas Berger ◽  
Vineeth Surendranath ◽  
Maria Teresa Pisabarro ◽  
...  

2018 ◽  
Author(s):  
Hemakumar M. Reddy ◽  
Thomas A. Randall ◽  
Radmila Capkova Frydrychova ◽  
James M. Mason

Background. Telomeres in Drosophila melanogaster are similar to those of other eukaryotes in terms of their function, although they are formed by non-LTR retrotransposons instead of telomerase-based short repeats. The length of the telomeres in Drosophila depends on the number of copies of these transposable elements. A dominant mutation, Tel1, causes a several-fold elongation of telomeres. Methods. In this study we identified the Tel1 mutation by a combination of transposon-induced, site-specific recombination and next generation sequencing. Results. Recombination located Tel1 to a 15 kb region in 92A. Comparison of the DNA sequence in this region with the Drosophila Genetic Reference Panel of wild type genomic sequences delimited Tel1 to a 3 bp deletion inside intron 8 of Ino80. Discussion. The mapped Tel1 mutation (3-bp deletion found in Ino80) did not appear to affect the quantity or length of the Ino80 transcript. Tel1 causes a significant reduction in transcripts of CG18493, a gene nested in an intron 8 of Ino80, which is expressed in ovaries and expected to encode a serine-type peptidase.


1990 ◽  
Vol 10 (1) ◽  
pp. 235-242
Author(s):  
L Meyer-Leon ◽  
R B Inman ◽  
M M Cox

Holliday structures are formed in the course of FLP protein-promoted site-specific recombination. Here, we demonstrate that Holliday structures are formed in reactions involving wild-type substrates and that they are kinetically competent with respect to the overall reaction rate. Together with a previous demonstration of chemical competence (L. Meyer-Leon, L.-C. Huang, S. W. Umlauf, M. M. Cox, and R. B. Inman, Mol. Cell. Biol. 8:3784-3796, 1988), Holliday structures therefore meet all criteria necessary to establish that they are obligate reaction intermediates in FLP-mediated site-specific recombination. In addition, kinetic evidence suggests that two distinct forms of the Holliday intermediate are present in the reaction pathway, interconverted in an isomerization process that is rate limiting at 0 degree C.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mohammed Radhi Mohaisen ◽  
Alan John McCarthy ◽  
Evelien M. Adriaenssens ◽  
Heather Elizabeth Allison

Sign in / Sign up

Export Citation Format

Share Document