scholarly journals Roles of the Escherichia coli RecA Protein and the Global SOS Response in Effecting DNA Polymerase Selection In Vivo

2005 ◽  
Vol 187 (22) ◽  
pp. 7607-7618 ◽  
Author(s):  
Robert W. Maul ◽  
Mark D. Sutton

ABSTRACT The Escherichia coli β sliding clamp protein is proposed to play an important role in effecting switches between different DNA polymerases during replication, repair, and translesion DNA synthesis. We recently described how strains bearing the dnaN159 allele, which encodes a mutant form of the β clamp (β159), display a UV-sensitive phenotype that is suppressed by inactivation of DNA polymerase IV (M. D. Sutton, J. Bacteriol. 186:6738-6748, 2004). As part of an ongoing effort to understand mechanisms of DNA polymerase management in E. coli, we have further characterized effects of the dnaN159 allele on polymerase usage. Three of the five E.coli DNA polymerases (II, IV, and V) are regulated as part of the global SOS response. Our results indicate that elevated expression of the dinB-encoded polymerase IV is sufficient to result in conditional lethality of the dnaN159 strain. In contrast, chronically activated RecA protein, expressed from the recA730 allele, is lethal to the dnaN159 strain, and this lethality is suppressed by mutations that either mitigate RecA730 activity (i.e., ΔrecR), or impair the activities of DNA polymerase II or DNA polymerase V (i.e., ΔpolB or ΔumuDC). Thus, we have identified distinct genetic requirements whereby each of the three different SOS-regulated DNA polymerases are able to confer lethality upon the dnaN159 strain, suggesting the presence of multiple mechanisms by which the actions of the cell's different DNA polymerases are managed in vivo.

1991 ◽  
Vol 226-226 (1-2) ◽  
pp. 24-33 ◽  
Author(s):  
Hiroshi Iwasaki ◽  
Yoshizumi Ishino ◽  
Hiroyuki Toh ◽  
Atsuo Nakata ◽  
Hideo Shinagawa

1998 ◽  
Vol 180 (8) ◽  
pp. 2232-2236 ◽  
Author(s):  
Yoshizumi Ishino ◽  
Kayoko Komori ◽  
Isaac K. O. Cann ◽  
Yosuke Koga

ABSTRACT One of the most puzzling results from the complete genome sequence of the methanogenic archaeon Methanococcus jannaschii was that the organism may have only one DNA polymerase gene. This is because no other DNA polymerase-like open reading frames (ORFs) were found besides one ORF having the typical α-like DNA polymerase (family B). Recently, we identified the genes of DNA polymerase II (the second DNA polymerase) from the hyperthermophilic archaeonPyrococcus furiosus, which has also at least one α-like DNA polymerase (T. Uemori, Y. Sato, I. Kato, H. Doi, and Y. Ishino, Genes Cells 2:499–512, 1997). The genes in M. jannaschiiencoding the proteins that are homologous to the DNA polymerase II ofP. furiosus have been located and cloned. The gene products of M. jannaschii expressed in Escherichia colihad both DNA polymerizing and 3′→5′ exonuclease activities. We propose here a novel DNA polymerase family which is entirely different from other hitherto-described DNA polymerases.


1997 ◽  
Vol 94 (3) ◽  
pp. 946-951 ◽  
Author(s):  
S. Rangarajan ◽  
G. Gudmundsson ◽  
Z. Qiu ◽  
P. L. Foster ◽  
M. F. Goodman

2004 ◽  
Vol 186 (14) ◽  
pp. 4802-4807 ◽  
Author(s):  
Wojciech Kuban ◽  
Piotr Jonczyk ◽  
Damian Gawel ◽  
Karolina Malanowska ◽  
Roel M. Schaaper ◽  
...  

ABSTRACT We have investigated whether DNA polymerase IV (Pol IV; the dinB gene product) contributes to the error rate of chromosomal DNA replication in Escherichia coli. We compared mutation frequencies in mismatch repair-defective strains that were either dinB positive or dinB deficient, using a series of mutational markers, including lac targets in both orientations on the chromosome. Virtually no contribution of Pol IV to the chromosomal mutation rate was observed. On the other hand, a significant effect of dinB was observed for reversion of a lac allele when the lac gene resided on an F′(pro-lac) episome.


2007 ◽  
Vol 189 (13) ◽  
pp. 4688-4695 ◽  
Author(s):  
Robert W. Maul ◽  
Laurie H. Sanders ◽  
James B. Lim ◽  
Rosemary Benitez ◽  
Mark D. Sutton

ABSTRACT The Escherichia coli dnaN159 allele encodes a mutant form of the β-sliding clamp (β159) that is impaired for interaction with the replicative DNA polymerase (Pol), Pol III. In addition, strains bearing the dnaN159 allele require functional Pol I for viability. We have utilized a combination of genetic and biochemical approaches to characterize the role(s) played by Pol I in the dnaN159 strain. Our findings indicate that elevated levels of Pol I partially suppress the temperature-sensitive growth phenotype of the dnaN159 strain. In addition, we demonstrate that the β clamp stimulates the processivity of Pol I in vitro and that β159 is impaired for this activity. The reduced ability of β159 to stimulate Pol I in vitro correlates with our finding that single-stranded DNA (ssDNA) gap repair is impaired in the dnaN159 strain. Taken together, these results suggest that (i) the β clamp-Pol I interaction may be important for proper Pol I function in vivo and (ii) in the absence of Pol I, ssDNA gaps may persist in the dnaN159 strain, leading to lethality of the dnaN159 ΔpolA strain.


2019 ◽  
Vol 47 (20) ◽  
pp. 10693-10705 ◽  
Author(s):  
Mary K Johnson ◽  
Jithesh Kottur ◽  
Deepak T Nair

Abstract The presence of ribonucleotides in DNA can lead to genomic instability and cellular lethality. To prevent adventitious rNTP incorporation, the majority of the DNA polymerases (dPols) possess a steric filter. The dPol named MsDpo4 (Mycobacterium smegmatis) naturally lacks this steric filter and hence is capable of rNTP addition. The introduction of the steric filter in MsDpo4 did not result in complete abrogation of the ability of this enzyme to incorporate ribonucleotides. In comparison, DNA polymerase IV (PolIV) from Escherichia coli exhibited stringent selection for deoxyribonucleotides. A comparison of MsDpo4 and PolIV led to the discovery of an additional polar filter responsible for sugar selectivity. Thr43 represents the filter in PolIV and this residue forms interactions with the incoming nucleotide to draw it closer to the enzyme surface. As a result, the 2’-OH in rNTPs will clash with the enzyme surface, and therefore ribonucleotides cannot be accommodated in the active site in a conformation compatible with productive catalysis. The substitution of the equivalent residue in MsDpo4–Cys47, with Thr led to a drastic reduction in the ability of the mycobacterial enzyme to incorporate rNTPs. Overall, our studies evince that the polar filter serves to prevent ribonucleotide incorporation by dPols.


Genetics ◽  
1994 ◽  
Vol 136 (2) ◽  
pp. 439-448 ◽  
Author(s):  
I Tessman ◽  
M A Kennedy

Abstract The function of DNA polymerase II of Escherichia coli is an old question. Any phenotypic character that Pol II may confer upon the cell has escaped detection since the polymerase was discovered 24 yr ago. Although it has been shown that Pol II enables DNA synthesis to proceed past abasic sites in vitro, no role is known for it in the bypass of those lesions in vivo. From a study of phage S13 single-stranded DNA, we now report SOS conditions under which Pol II is needed for DNA synthesis to proceed past abasic sites with 100% efficiency in vivo. Overproduction of the GroES+L+ heat shock proteins, which are members of a ubiquitous family of molecular chaperones, eliminated this requirement for Pol II, which may explain why the role of Pol II in SOS repair had eluded discovery. Mutagenesis accompanied SOS bypass of abasic sites when the original occupant had been cytosine but not when it had been thymine; the quantitative difference is shown to imply that adenine was inserted opposite the abasic sites at least 99.7% of the time, which is an especially strict application of the A-rule. Most, but not all, spontaneous mutations from Rifs to Rifr, whether in a recA+ or a recA(Prtc) cell, require Pol II; while this suggests that cryptic abasic lesions are a likely source of spontaneous mutations, it also shows that such lesions cannot be the exclusive source.


2006 ◽  
Vol 188 (13) ◽  
pp. 4992-4995 ◽  
Author(s):  
Masami Yamada ◽  
Tatsuo Nunoshiba ◽  
Masatomi Shimizu ◽  
Petr Gruz ◽  
Hiroyuki Kamiya ◽  
...  

ABSTRACT Escherichia coli DNA polymerase IV incorporated 2-hydroxy-dATP opposite template guanine or thymine and 8-hydroxy-dGTP exclusively opposite adenine in vitro. Mutator phenotypes in sod/fur strains were substantially diminished by deletion of dinB and/or umuDC. DNA polymerases IV and V may be involved in mutagenesis caused by incorporation of the oxidized deoxynucleoside triphosphates.


Sign in / Sign up

Export Citation Format

Share Document