sos response
Recently Published Documents


TOTAL DOCUMENTS

458
(FIVE YEARS 78)

H-INDEX

49
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Yizhe Zhang ◽  
Jeremy J Agresti ◽  
Yu Zheng ◽  
David A Weitz

A restriction endonuclease (RE) is an enzyme that can recognize a specific DNA sequence and cleave that DNA into fragments with double-stranded breaks. This sequence-specific cleaving ability and its ease of use have made REs commonly used tools in molecular biology since their first isolation and characterization in 1970s. While artificial REs still face many challenges in large-scale synthesis and precise activity control for practical use, searching for new REs in natural samples remains a viable route for expanding the RE pool for fundamental research and industrial applications. In this paper, we propose a new strategy to search for REs in an efficient fashion. Briefly, we construct a host bacterial cell to link the RE genotype to the phenotype of β-galactosidase expression based on the bacterial SOS response, and use a high-throughput microfluidic platform to isolate, detect and sort the REs. We employ this strategy to screen for the XbaI gene from constructed libraries of varied sizes. In single round of sorting, a 30-fold target enrichment was obtained within 1 h. The direct screening approach we propose shows potential for efficient search of desirable REs in natural samples compared to the conventional RE-screening method, and is amenable to being adapted to high-throughput screening of other genotoxic targets.


Author(s):  
John K. Crane ◽  
Sarah R. Burke ◽  
Cassandra L. Alvarado

BackgroundPrevious reports have differed as to whether nitric oxide inhibits or stimulates the SOS response, a bacterial stress response that is often triggered by DNA damage. The SOS response is an important regulator of production of Shiga toxins (Stx) in Shiga-toxigenic E. coli (STEC). In addition, the SOS response is accompanied by hypermutation, which can lead to de novo emergence of antibiotic resistance. We studied these effects in vitro as well as in vivo.ResultsNitric oxide donors inhibited induction of the SOS response by classical inducers such as mitomycin C, ciprofloxacin, and zidovudine, as measured by assays for E. coli RecA. Nitric oxide donors also inhibited Stx toxin protein production as well as stx2 RNA in vitro and in vivo. In vivo experiments were performed with ligated ileal segments in the rabbit using a 20 h infection. The NO donor S-nitroso-acetylpenicillamine (SNAP) reduced hypermutation in vitro and in vivo, as measured by emergence of rifampin resistance. SNAP blocked the ability of the RecA protein to bind to single-stranded DNA in an electrophoretic mobility shift assay (EMSA) in vitro, an early event in the SOS response. The inhibitory effects of SNAP were additive with those of zinc acetate.ConclusionsNitric oxide donors blocked the initiation step of the SOS response. Downstream effects of this blockade included inhibition of Stx production and of hypermutation. Infection of rabbit loops with STEC resulted in a downregulation, rather than stimulation, of nitric oxide host defenses at 20 h of infection.


2021 ◽  
Author(s):  
P. Malaka De Silva ◽  
George E. Stenhouse ◽  
Grace E. Blackwell ◽  
Rebecca Bengtsson ◽  
Claire Jenkins ◽  
...  

Dissemination of antimicrobial resistance (AMR) genes by horizontal gene transfer (HGT) mediated through plasmids is a major global concern. Genomic epidemiology studies have shown varying success of different AMR plasmids during outbreaks, but the underlying reasons for these differences are unclear. Here, we investigated two Shigella plasmids (pKSR100 and pAPR100) that circulated in the same transmission network but had starkly contrasting epidemiological outcomes to identify plasmid features that may have contributed to the differences. We used plasmid comparative genomics to reveal divergence between the two plasmids in genes encoding AMR, SOS response alleviation, and conjugation. Experimental analyses revealed that these genomic differences corresponded with reduced conjugation rates for the epidemiologically successful pKSR100, but more extensive AMR, reduced fitness costs, and a reduced SOS response in the presence of antimicrobials, compared with the less successful pAPR100. The discrepant phenotypes between the two plasmids are consistent with the hypothesis that plasmid associated phenotypes contribute to determining the epidemiological outcome of AMR HGT and suggest that phenotypes relevant in responding to antimicrobial pressure and fitness impact may be more important than those around conjugation in this setting. Plasmid phenotypes could thus be valuable tools in conjunction with genomic epidemiology for predicting AMR dissemination.


Author(s):  
Elizabeth B Lewis ◽  
Edwin Chen ◽  
Matthew J Culyba

Abstract The bacterial DNA damage response pathway (SOS response) is composed of a network of genes regulated by a single transcriptional repressor, LexA. The lexA promoter, itself, contains two LexA operators, enabling negative feedback. In Escherichia coli, the downstream operator contains a conserved DNA cytosine methyltransferase (Dcm) site that is predicted to be methylated to 5-methylcytosine (5mC) specifically during stationary phase growth, suggesting a regulatory role for DNA methylation in the SOS response. To test this, we quantified 5mC at the lexA locus, and then examined the effect of LexA on Dcm activity, as well as the impact of this 5mC mark on LexA binding, lexA transcription, and SOS response induction. We found that 5mC at the lexA promoter is specific to stationary phase growth, but that it does not affect lexA expression. Our data support a model where LexA binding at the promoter inhibits Dcm activity without an effect on the SOS regulon.


mBio ◽  
2021 ◽  
Author(s):  
Nina S. Baggett ◽  
Adam S. Bronson ◽  
Matthew T. Cabeen

Pseudomonas aeruginosa is a versatile and ubiquitous bacterium that frequently infects humans as an opportunistic pathogen. P. aeruginosa competes with other strains within the species by producing killing complexes termed pyocins, which are only known to be induced by cells experiencing DNA damage and the subsequent SOS response. Here, we discovered that strains lacking a recombinase enzyme called XerC strongly produce pyocins independently of the SOS response.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3227
Author(s):  
André Carvalho ◽  
Evelyne Krin ◽  
Chloé Korlowski ◽  
Didier Mazel ◽  
Zeynep Baharoglu

Antibiotics are well known drugs which, when present above certain concentrations, are able to inhibit the growth of certain bacteria. However, a growing body of evidence shows that even when present at lower doses (subMIC, for sub-minimal inhibitory concentration), unable to inhibit or affect microbial growth, antibiotics work as signaling molecules, affect gene expression and trigger important bacterial stress responses. However, how subMIC antibiotic signaling interplays with other well-known signaling networks in bacteria (and the consequences of such interplay) is not well understood. In this work, through transcriptomic and genetic approaches, we have explored how quorum-sensing (QS) proficiency of V. cholerae affects this pathogen’s response to subMIC doses of the aminoglycoside tobramycin (TOB). We show that the transcriptomic signature of V. cholerae in response to subMIC TOB depends highly on the presence of QS master regulator HapR. In parallel, we show that subMIC doses of TOB are able to negatively interfere with the AI-2/LuxS QS network of V. cholerae, which seems critical for survival to aminoglycoside treatment and TOB-mediated induction of SOS response in this species. This interplay between QS and aminoglycosides suggests that targeting QS signaling may be a strategy to enhance aminoglycoside efficacy in V. cholerae.


2021 ◽  
Author(s):  
Linda Tlili ◽  
Marie-Cécile Ploy ◽  
Sandra Da Re

Class 1 integrons play a major role in antibiotic resistance dissemination among Gram-negative bacteria. They are genetic platforms able to capture, exchange and express antibiotic resistance gene cassettes. The integron integrase, whose expression is regulated by the bacterial SOS response, is the key element of the integron catalyzing insertion/excision/shuffling of gene cassettes. We previously demonstrated that the basal level of integrase expression and in consequence, its activity, is increased via the starvation-induced stringent response in the biofilm population. However, biofilms are heterogeneous environments where bacteria are under various physiological states. Here we thus analyzed at the bacterial level, the SOS response and integrase expression within the biofilm, using confocal microscopy and flow cytometry. We showed that in the absence of exogenous stress, only a small number of bacteria (~ 1%) located in the depth of the biofilm induce the SOS-response leading to a high level of integrase expression, through both a stringent response-dependent and -independent manner. Our results thus indicate that few bacteria located in microniches of the biofilm depth undergo sufficient endogenous stress to promote the acquisition of antibiotic resistance, forming a reservoir of bacteria ready to rapidly resist antibiotic treatments.


2021 ◽  
Author(s):  
Zdravko Podlesek ◽  
Darja Žgur Bertok

The Escherichia coli SOS response is an inducible DNA damage repair pathway controlled by two key regulators, LexA, a repressor and RecA, an inducer. Upon DNA damage RecA is activated and stimulates self cleavage of LexA, leading to, in E. coli, derepresion of approximately 50 SOS genes. The response is triggered by exogenous and endogenous signals that bacteria encounter at a number of sites within the host. Nevertheless, besides regulating DNA damage repair the SOS response plays a much broader role. Thus, SOS error prone polymerases promote elevated mutation rates significant for genetic adaptation and diversity, including antibiotic resistance. Here we review the E. coli SOS response in relation to recalcitrance to antimicrobials, including persister and biofilm formation, horizontal gene tranfer, gene mobility, bacterial pathogenicity, as well SOS induced bacteriocins that drive diversification. Phenotypic heterogeneity in expression of the SOS regulator genes, recA and lexA as well as colicin activity genes is also discussed.


Sign in / Sign up

Export Citation Format

Share Document