scholarly journals Rapid Identification of Mycoplasma bovis Strains from Bovine Bronchoalveolar Lavage Fluid with Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry after Enrichment Procedure

2020 ◽  
Vol 58 (6) ◽  
Author(s):  
Jade Bokma ◽  
Laura Van Driessche ◽  
Piet Deprez ◽  
Freddy Haesebrouck ◽  
Marianne Vahl ◽  
...  

ABSTRACT Mycoplasma bovis is a leading cause of pneumonia in modern calf rearing. Fast identification is essential to ensure appropriate antimicrobial therapy. Therefore, the objective of this study was to develop a protocol to identify M. bovis from bronchoalveolar lavage fluid (BALf) with matrix-assisted laser desorption ionization–time of flight mass spectrometry MALDI-TOF MS and to determine the diagnostic accuracy in comparison with other techniques. BALf was obtained from 104 cattle, and the presence of M. bovis was determined in the following three ways: (i) rapid identification of M. bovis with MALDI-TOF MS (RIMM) (BALf was enriched and after 24, 48, and 72 h of incubation and was analyzed using MALDI-TOF MS), (ii) triplex real-time PCR for M. bovis, Mycoplasma bovirhinis, and Mycoplasma dispar, and (iii) 10-day incubation on selective-indicative agar. The diagnostic accuracy of the three tests was determined with Bayesian latent class modeling (BLCM). After 24 h of enrichment, M. bovis was identified with MALDI-TOF MS in 3 out of 104 BALf samples. After 48 and 72 h of enrichment, 32/104 and 38/100 samples, respectively, were M. bovis positive. Lipase-positive Mycoplasma-like colonies were seen in 28 of 104 samples. Real-time PCR resulted in 28/104 positive and 12/104 doubtful results for M. bovis. The BLCM showed a sensitivity (Se) and specificity (Sp) of 86.6% (95% credible interval [CI], 69.4% to 97.6%) and 86.4% (CI, 76.1 to 93.8) for RIMM. For real-time PCR, Se was 94.8% (CI, 89.9 to 97.9) and Sp was 88.9% (CI, 78.0 to 97.4). For selective-indicative agar, Se and Sp were 70.5% (CI, 52.1 to 87.1) and 93.9% (CI, 85.9 to 98.4), respectively. These results suggest that rapid identification of M. bovis with MALDI-TOF MS after an enrichment procedure is a promising test for routine diagnostics in veterinary laboratories.

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Richard D. Smith ◽  
Jerilyn R. Izac ◽  
Michael Ha ◽  
Hyojik Yang ◽  
J. Kristie Johnson ◽  
...  

Mobilized colistin resistance (mcr) genes confer resistance to colistin, a last-resort antibiotic for multidrug-resistant Gram-negative infections. In this case report, we describe a novel lipid-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) diagnostic used to rapidly identify an mcr-1-positive Escherichia coli directly from a patient with a urinary tract infection without the need for ex vivo growth.


2017 ◽  
Vol 55 (5) ◽  
pp. 1437-1445 ◽  
Author(s):  
Maya Beganovic ◽  
Michael Costello ◽  
Sarah M. Wieczorkiewicz

ABSTRACT Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) decreases the time to organism identification and improves clinical and financial outcomes. The purpose of this study was to evaluate the impact of MALDI-TOF MS alone versus MALDI-TOF MS combined with real-time, pharmacist-driven, antimicrobial stewardship (AMS) intervention on patient outcomes. This single-center, pre-post, quasiexperimental study evaluated hospitalized patients with positive blood cultures identified via MALDI-TOF MS combined with prospective AMS intervention compared to a control cohort with MALDI-TOF MS identification without AMS intervention. AMS intervention included: real-time MALDI-TOF MS pharmacist notification and prospective AMS provider feedback. The primary outcome was the time to optimal therapy (TTOT). A total of 252 blood cultures, 126 in each group, were included in the final analysis. MALDI-TOF MS plus AMS intervention significantly reduced the overall TTOT (75.17 versus 43.06 h; P < 0.001), the Gram-positive contaminant TTOT (48.21 versus 11.75 h; P < 0.001), the Gram-negative infection (GNI) TTOT (71.83 versus 35.98 h; P < 0.001), and the overall hospital length of stay (LOS; 15.03 versus 9.02 days; P = 0.021). The TTOT for Gram-positive infection (GPI) was improved (64.04 versus 41.61 h; P = 0.082). For GPI, the hospital LOS (14.64 versus 10.31 days; P = 0.002) and length of antimicrobial therapy 24.30 versus 18.97 days; P = 0.018) were reduced. For GNI, the time to microbiologic clearance (51.13 versus 34.51 h; P < 0.001), the hospital LOS (15.40 versus 7.90 days; P = 0.027), and the intensive care unit LOS (5.55 versus 1.19 days; P = 0.035) were reduced. To achieve optimal outcomes, rapid identification with MALDI-TOF MS combined with real-time AMS intervention is more impactful than MALDI-TOF MS alone.


2021 ◽  
Vol 12 ◽  
Author(s):  
Keyi Yu ◽  
Zhenzhou Huang ◽  
Ying Li ◽  
Qingbo Fu ◽  
Lirong Lin ◽  
...  

Shewanella species are widely distributed in the aquatic environment and aquatic organisms. They are opportunistic human pathogens with increasing clinical infections reported in recent years. However, there is a lack of a rapid and accurate method to identify Shewanella species. We evaluated here matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for rapid identification of Shewanella. A peptide mass reference spectra (PMRS) database was constructed for the type strains of 36 Shewanella species. The main spectrum projection (MSP) cluster dendrogram showed that the type strains of Shewanella species can be effectively distinguished according to the different MS fingerprinting. The PMRS database was validated using 125 Shewanella test strains isolated from various sources and periods; 92.8% (n = 116) of the strains were correctly identified at the species level, compared with the results of multilocus sequence analysis (MLSA), which was previously shown to be a method for identifying Shewanella at the species level. The misidentified strains (n = 9) by MALDI-TOF MS involved five species of two groups, i.e., Shewanella algae–Shewanella chilikensis–Shewanella indica and Shewanella seohaensis–Shewanella xiamenensis. We then identified and defined species-specific biomarker peaks of the 36 species using the type strains and validated these selected biomarkers using 125 test strains. Our study demonstrated that MALDI-TOF MS was a reliable and powerful tool for the rapid identification of Shewanella strains at the species level.


2017 ◽  
Vol 55 (4) ◽  
pp. 1162-1176 ◽  
Author(s):  
Andrew M. Borman ◽  
Mark Fraser ◽  
Adrien Szekely ◽  
Daniel E. Larcombe ◽  
Elizabeth M. Johnson

ABSTRACT Exophiala is a ubiquitous pleomorphic genus comprising at least 40 species, many of which have been associated with superficial, visceral, or systemic infections in humans, other mammals, or cold-blooded animals. In this study, we investigated the potential of matrix-assisted laser desorption–ionization time of flight mass spectrometry (MALDI-TOF MS) for the identification of Exophiala species. A total of 89 isolates (including 50 human and 4 animal clinical isolates) stored in the National Collection of Pathogenic Fungi were identified by PCR amplification and sequencing of internal transcribed spacer region 1. Eighty-three of the isolates corresponded to 16 known species within Exophiala/Rhinocladiella . The remaining six isolates are shown by phylogenetic analyses based on four loci to represent two novel Exophiala species. Four isolates from domestic bathrooms which form a sister species with Exophiala lecanii-corni are described here as Exophiala lavatrina sp. nov. The remaining two isolates, both from subcutaneous infections, are distantly related to Exophiala oligosperma and are described here as Exophiala campbellii sp. nov. The triazoles and terbinafine exhibited low MICs against all Exophiala isolates in vitro . MALDI-TOF MS successfully distinguished all 18 species and identified all isolates after appropriate reference spectra were created and added to commercial databases. Intraspecific mean log scores ranged from 1.786 to 2.584 and were consistently significantly higher than interspecific scores (1.193 to 1.624), with the exception of E. lecanii-corni and E. lavatrina , for which there was considerable log score overlap. In summary, MALDI-TOF MS allows the rapid and accurate identification of a wide range of clinically relevant Exophiala species.


2013 ◽  
Vol 2 (3) ◽  
pp. 104 ◽  
Author(s):  
Yuko Furukawa ◽  
Mitsuru Katase ◽  
Kazunobu Tsumura

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has recently been demonstrated as a rapid and reliable method for identifying bacteria in colonies grown on culture plates. Rapid identification of food spoilage bacteria is important for ensuring the quality and safety of food. To shorten the time of analysis, several researchers have proposed the direct MALDI-TOF MS tequnics for identification of bacteria in clinical samples such as urine and positive blood cultures. In this study, processed soybean products (total 26 test samples) were initially conducted a culture enrichiment step and bacterial cells were separated from interfering components. Harvested bacterial cells were determined by MALDI-TOF MS and 16S rRNA gene sequencing method. Six processed soybean products (23%) were increased bacterial cells after culture enrichiment step and they were sucessfully obtained the accurate identification results by MALDI-TOF MS-based method without colony formation.


2015 ◽  
Vol 54 (2) ◽  
pp. 376-384 ◽  
Author(s):  
S. P. Buckwalter ◽  
S. L. Olson ◽  
B. J. Connelly ◽  
B. C. Lucas ◽  
A. A. Rodning ◽  
...  

The value of matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and yeasts is well documented in the literature. Its utility for the identification of mycobacteria andNocardiaspp. has also been reported in a limited scope. In this work, we report the specificity of MALDI-TOF MS for the identification of 162Mycobacteriumspecies and subspecies, 53Nocardiaspecies, and 13 genera (totaling 43 species) of other aerobic actinomycetes using both the MALDI-TOF MS manufacturer's supplied database(s) and a custom database generated in our laboratory. The performance of a simplified processing and extraction procedure was also evaluated, and, similar to the results in an earlier literature report, our viability studies confirmed the ability of this process to inactivateMycobacterium tuberculosisprior to analysis. Following library construction and the specificity study, the performance of MALDI-TOF MS was directly compared with that of 16S rRNA gene sequencing for the evaluation of 297 mycobacteria isolates, 148Nocardiaspecies isolates, and 61 other aerobic actinomycetes isolates under routine clinical laboratory working conditions over a 6-month period. MALDI-TOF MS is a valuable tool for the identification of these groups of organisms. Limitations in the databases and in the ability of MALDI-TOF MS to rapidly identify slowly growing mycobacteria are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chia-Ru Chung ◽  
Zhuo Wang ◽  
Jing-Mei Weng ◽  
Hsin-Yao Wang ◽  
Li-Ching Wu ◽  
...  

As antibiotics resistance on superbugs has risen, more and more studies have focused on developing rapid antibiotics susceptibility tests (AST). Meanwhile, identification of multiple antibiotics resistance on Staphylococcus aureus provides instant information which can assist clinicians in administrating the appropriate prescriptions. In recent years, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful tool in clinical microbiology laboratories for the rapid identification of bacterial species. Yet, lack of study devoted on providing efficient methods to deal with the MS shifting problem, not to mention to providing tools incorporating the MALDI-TOF MS for the clinical use which deliver the instant administration of antibiotics to the clinicians. In this study, we developed a web tool, MDRSA, for the rapid identification of oxacillin-, clindamycin-, and erythromycin-resistant Staphylococcus aureus. Specifically, the kernel density estimation (KDE) was adopted to deal with the peak shifting problem, which is critical to analyze mass spectra data, and machine learning methods, including decision trees, random forests, and support vector machines, which were used to construct the classifiers to identify the antibiotic resistance. The areas under the receiver operating the characteristic curve attained 0.8 on the internal (10-fold cross validation) and external (independent testing) validation. The promising results can provide more confidence to apply these prediction models in the real world. Briefly, this study provides a web-based tool to provide rapid predictions for the resistance of antibiotics on Staphylococcus aureus based on the MALDI-TOF MS data. The web tool is available at: http://fdblab.csie.ncu.edu.tw/mdrsa/.


2020 ◽  
Vol 59 (1) ◽  
pp. e02358-20
Author(s):  
Jianchun Wei ◽  
Huijuan Zhang ◽  
Huifang Zhang ◽  
Enmin Zhang ◽  
Binghua Zhang ◽  
...  

ABSTRACTThe objective of this study was to construct a rapid, high-throughput, and biosafety-compatible screening method for Bacillus anthracis and Bacillus cereus based on matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS coupled to ClinProTools was used to discover MALDI-TOF MS biomarker peaks and generate a classification model based on a genetic algorithm (GA) to differentiate between different Bacillus anthracis and Bacillus cereus isolates. Thirty Bacillus anthracis and 19 Bacillus cereus strains were used to construct and analyze the model, and 40 Bacillus strains were used for validation. For the GA screening model, the cross-validation values, which reflect the ability of the model to handle variability among the test spectra, and the recognition capability values, which reflect the model’s ability to correctly identify its component spectra, were all 100%. This model contained 10 biomarker peaks (m/z 3,339.9, 3,396.3, 3,682.4, 5,476.7, 6,610.6, 6,680.1, 7,365.3, 7,792.4, 9,475.8, and 10,934.1) used to correctly identify 28 Bacillus anthracis and 12 Bacillus cereus isolates from 40 Bacillus isolates, with a sensitivity and specificity of 100%. With the obvious advantages of being rapid, highly accurate, and highly sensitive and having a low cost and high throughput, MALDI-TOF MS ClinProTools is a powerful and reliable tool for screening Bacillus anthracis and Bacillus cereus strains.


2015 ◽  
Vol 53 (11) ◽  
pp. 3580-3588 ◽  
Author(s):  
Raquel Arinto-Garcia ◽  
Marcos Daniel Pinho ◽  
João André Carriço ◽  
José Melo-Cristino ◽  
Mário Ramirez

The heterogeneity of members of theStreptococcus anginosusgroup (SAG) has traditionally hampered their correct identification. Recently, the group was subdivided into 6 taxa whose prevalence among human infections is poorly described. We evaluated the accuracy of the Rapid ID32 Strep test, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), and a PCR multiplex method to identify 212 SAG isolates recovered from human infections to the species and subspecies level by using multilocus sequence analysis (MLSA) as the gold standard. We also determined the antimicrobial susceptibilities of the isolates. Representatives of all SAG taxa were found among our collection. MALDI-TOF MS and the Rapid ID32 Strep test correctly identified 92% and 68% of the isolates to the species level, respectively, but showed poor performance at the subspecies level, and the latter was responsible for major identification errors. The multiplex PCR method results were in complete agreement with the MLSA identifications but failed to distinguish the subspeciesStreptococcus constellatussubsp.pharyngisandS. constellatussubsp.viborgensis. A total of 145 MLSA sequence types were present in our collection, indicating that within each taxon a number of different lineages are capable of causing infection. Significant antibiotic resistance was observed only to tetracycline, erythromycin, and clindamycin and was present in most taxa. MALDI-TOF MS is a reliable method for routine SAG species identification, while the need for identification to the subspecies level is not clearly established.


2015 ◽  
Vol 53 (4) ◽  
pp. 1399-1402 ◽  
Author(s):  
Shuping Nie ◽  
Baoyu Tian ◽  
Xiaowei Wang ◽  
David H. Pincus ◽  
Martin Welker ◽  
...  

We explored the use of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) for identification ofFusobacterium nucleatumsubspecies. MALDI-TOF MS spectra of fiveF. nucleatumsubspecies (animalis,fusiforme,nucleatum,polymorphum, andvincentii) were analyzed and divided into four distinct clusters, including subsp.animalis,nucleatum,polymorphum, andfusiforme/vincentii. MALDI-TOF MS with the modified SARAMIS database further correctly identified 28 of 34F. nucleatumclinical isolates to the subspecies level.


Sign in / Sign up

Export Citation Format

Share Document