scholarly journals Ground Steel Target Plates in Combination with Direct Transfer of Clinical Candida Isolates Improves Frequencies of Species-Level Identification by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry in Comparison with Polished Steel Target Plates

2015 ◽  
Vol 53 (6) ◽  
pp. 1993-1995 ◽  
Author(s):  
Arnaud Riat ◽  
Rob J. Rentenaar ◽  
Adriaan M. van Drongelen ◽  
Valérie Barras ◽  
Loes C. M. Bertens ◽  
...  
2019 ◽  
Vol 5 (3) ◽  
pp. 56 ◽  
Author(s):  
Patrick Schwarz ◽  
Houssem Guedouar ◽  
Farah Laouiti ◽  
Frédéric Grenouillet ◽  
Eric Dannaoui

More than 20 different species of Mucorales can be responsible for human mucormycosis. Accurate identification to the species level is important. The morphological identification of Mucorales is not reliable, and the currently recommended identification standard is the molecular technique of sequencing the internal transcribed spacer regions. Nevertheless, matrix-assisted laser desorption ionization time-of-flight mass spectrometry has been shown to be an accurate alternative for the identification of bacteria, yeasts, and even filamentous fungi. Therefore, 38 Mucorales isolates, belonging to 12 different species or varieties, mainly from international collections, including 10 type or neo-type strains previously identified by molecular methods, were used to evaluate the usefulness of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of human pathogenic Mucorales to the species level. One to three reference strains for each species were used to create a database of main spectrum profiles, and the remaining isolates were used as test isolates. A minimum of 10 spectra was used to build the main spectrum profile of each database strain. Interspecies discrimination for all the isolates, including species belonging to the same genus, was possible. Twenty isolates belonging to five species were used to test the database accuracy, and were correctly identified to the species level with a log-score >2. In summary, matrix-assisted laser desorption ionization time-of-flight mass spectrometry is a reliable and rapid method for the identification of most of the human pathogenic Mucorales to the species level.


2017 ◽  
Vol 55 (7) ◽  
pp. 2255-2260 ◽  
Author(s):  
Carlos Ruiz de Alegría Puig ◽  
Lilian Pilares ◽  
Francesc Marco ◽  
Jordi Vila ◽  
Luis Martínez-Martínez ◽  
...  

ABSTRACTRhodococcus equicauses pyogranulomatous pneumonia in domesticated animals and immunocompromised humans.Dietziaspp. are environmental bacteria that have rarely been associated with human infections.R. equiandDietziaspp. are closely related actinomycetes. Phenotypic discrimination betweenR. equiandDietziaon the basis of their Gram stain morphology and colony appearance is problematic. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a fast, reliable, and cost-effective method for identification of a wide variety of microorganisms. We have evaluated the performance of Bruker Biotyper versus that of Vitek MS for identification of a collection of 154 isolates identified at the source asR. equithat includes isolates belonging to the genusDietzia. PCR amplification of thechoEgene, encoding a cholesterol oxidase, and 16S rRNA sequencing were considered the reference methods forR. equiidentification. Biotyper identified 131 (85.1%) of the 154 isolates at the species level, and this figure increased to 152 (98.7%) when the species cutoff was reduced from a score of ≥2.000 to ≥1.750. Vitek MS correctly identified at the species level 130 (84.4%) isolates as long as bacteria were extracted with ethanol but only 35 (22.7%) isolates when samples were prepared by direct extraction from colonies. The two systems allowed differentiation betweenR. equiandDietziaspp., but identification of allDietziasp. isolates at the species level needed sequencing of the 16S rRNA gene.


2011 ◽  
Vol 57 (7) ◽  
pp. 533-538 ◽  
Author(s):  
Ying He ◽  
Tsung C. Chang ◽  
Haijing Li ◽  
Gongyi Shi ◽  
Yi-Wei Tang

More than 20 species of Legionella have been identified in relation to human infections. Rapid detection and identification of Legionella isolates is clinically useful to differentiate between infection and contamination and to determine treatment regimens. We explored the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) Biotyper system (Bruker Daltonik GmbH, Bremen, Germany) for the identification of Legionella species. The MALDI MS spectra were generated and compared with the Biotyper database, which includes 25 Legionella strains covering 22 species and four Legionella pneumophila serogroups. A total of 83 blind-coded Legionella strains, consisting of 54 reference and 29 clinical strains, were analyzed in the study. Overall, the Biotyper system correctly identified 51 (61.4%) of all strains and isolates to the species level. For species included in the Biotyper database, the method identified 51 (86.4%) strains out of 59 Legionella strains to the correct species level, including 24 (100%) L. pneumophila and 27 (77.1%) non-L. pneumophila strains. The remaining 24 Legionella strains, belonging to species not covered by the Biotyper database, were either identified to the Legionella genus level or had no reliable identification. The Biotyper system produces constant and reproducible MALDI MS spectra for Legionella strains and can be used for rapid and accurate Legionella identification. More Legionella strains, especially the non-L. pneumophila strains, need to be included in the current Biotyper database to cover varieties of Legionella species and to increase identification accuracy.


Sign in / Sign up

Export Citation Format

Share Document