scholarly journals Tyrosine Phosphorylation of CagA from Chinese Helicobacter pylori Isolates in AGS Gastric Epithelial Cells

2005 ◽  
Vol 43 (2) ◽  
pp. 786-790 ◽  
Author(s):  
Y. Zhang ◽  
R. H. Argent ◽  
D. P. Letley ◽  
R. J. Thomas ◽  
J. C. Atherton
2010 ◽  
Vol 138 (5) ◽  
pp. S-448
Author(s):  
Kai Syin Lee ◽  
Anastasia Kalantzis ◽  
Naoko Murata-Kamiya ◽  
Masanori Hatakeyama ◽  
Andrew S. Giraud ◽  
...  

2019 ◽  
Vol 17 (1) ◽  
pp. 50-63 ◽  
Author(s):  
Atsushi Takahashi-Kanemitsu ◽  
Christopher T. Knight ◽  
Masanori Hatakeyama

AbstractChronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor for gastric cancer. The cagA gene product, CagA, is delivered into gastric epithelial cells via the bacterial type IV secretion system. Delivered CagA then undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in its C-terminal region and acts as an oncogenic scaffold protein that physically interacts with multiple host signaling proteins in both tyrosine phosphorylation-dependent and -independent manners. Analysis of CagA using in vitro cultured gastric epithelial cells has indicated that the nonphysiological scaffolding actions of CagA cell-autonomously promote the malignant transformation of the cells by endowing the cells with multiple phenotypic cancer hallmarks: sustained proliferation, evasion of growth suppressors, invasiveness, resistance to cell death, and genomic instability. Transgenic expression of CagA in mice leads to in vivo oncogenic action of CagA without any overt inflammation. The in vivo oncogenic activity of CagA is further potentiated in the presence of chronic inflammation. Since Helicobacter pylori infection triggers a proinflammatory response in host cells, a feedforward stimulation loop that augments the oncogenic actions of CagA and inflammation is created in CagA-injected gastric mucosa. Given that Helicobacter pylori is no longer colonized in established gastric cancer lesions, the multistep nature of gastric cancer development should include a “hit-and-run” process of CagA action. Thus, acquisition of genetic and epigenetic alterations that compensate for CagA-directed cancer hallmarks may be required for completion of the “hit-and-run” process of gastric carcinogenesis.


2006 ◽  
Vol 26 (1) ◽  
pp. 261-276 ◽  
Author(s):  
Ryouhei Tsutsumi ◽  
Atsushi Takahashi ◽  
Takeshi Azuma ◽  
Hideaki Higashi ◽  
Masanori Hatakeyama

ABSTRACT Infection with cagA-positive Helicobacter pylori (H. pylori) is associated with atrophic gastritis, peptic ulcer, and gastric adenocarcinoma. The cagA gene product CagA is translocated from H. pylori into gastric epithelial cells and undergoes tyrosine phosphorylation by Src family kinases (SFKs). Tyrosine-phosphorylated CagA binds and activates SHP-2 phosphatase and the C-terminal Src kinase (Csk) while inducing an elongated cell shape termed the “hummingbird phenotype.” Here we show that CagA reduces the level of focal adhesion kinase (FAK) tyrosine phosphorylation in gastric epithelial cells. The decrease in phosphorylated FAK is due to SHP-2-mediated dephosphorylation of FAK at the activating phosphorylation sites, not due to Csk-dependent inhibition of SFKs, which phosphorylate FAK. Coexpression of constitutively active FAK with CagA inhibits induction of the hummingbird phenotype, whereas expression of dominant-negative FAK elicits an elongated cell shape characteristic of the hummingbird phenotype. These results indicate that inhibition of FAK by SHP-2 plays a crucial role in the morphogenetic activity of CagA. Impaired cell adhesion and increased motility by CagA may be involved in the development of gastric lesions associated with cagA-positive H. pylori infection.


2009 ◽  
Vol 2009 (6) ◽  
pp. 722-728
Author(s):  
Can-Xia XU ◽  
Yan JIA ◽  
Wen-Bin YANG ◽  
Hui-Fang ZOU ◽  
Fen WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document