scholarly journals Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus

2017 ◽  
Vol 91 (9) ◽  
Author(s):  
Meiling Dai ◽  
Ryan McBride ◽  
Jos C. F. M. Dortmans ◽  
Wenjie Peng ◽  
Mark J. G. Bakkers ◽  
...  

ABSTRACT The emergence of the novel influenza A virus (IAV) H7N9 since 2013 has caused concerns about the ability of the virus to spread between humans. Analysis of the receptor-binding properties of the H7 protein of a human isolate revealed modestly increased binding to α2,6 sialosides and reduced, but still dominant, binding to α2,3-linked sialic acids (SIAs) compared to a closely related avian H7N9 virus from 2008. Here, we show that the corresponding N9 neuraminidases (NAs) display equal enzymatic activities on a soluble monovalent substrate and similar substrate specificities on a glycan array. In contrast, solid-phase activity and binding assays demonstrated reduced specific activity and decreased binding of the novel N9 protein. Mutational analysis showed that these differences resulted from substitution T401A in the 2nd SIA-binding site, indicating that substrate binding via this site enhances NA catalytic activity. Substitution T401A in the novel N9 protein appears to functionally mimic the substitutions that are found in the 2nd SIA-binding site of NA proteins of avian-derived IAVs that became human pandemic viruses. Our phylogenetic analyses show that substitution T401A occurred prior to substitutions in hemagglutinin (HA), causing the altered receptor-binding properties mentioned above. Hence, in contrast to the widespread assumption that such changes in NA are obtained only after acquisition of functional changes in HA, our data indicate that mutations in the 2nd SIA-binding site may have enabled and even driven the acquisition of altered HA receptor-binding properties and may have contributed to the spread of the novel H7N9 viruses. IMPORTANCE Novel H7N9 IAVs continue to cause human infections and pose an ongoing public health threat. Here, we show that their N9 proteins display reduced binding to and lower enzymatic activity against multivalent substrates, resulting from mutation of the 2nd sialic acid-binding site. This mutation preceded and may have driven the selection of substitutions in H7 that modify H7 receptor-binding properties. Of note, all animal IAVs that managed to cross the host species barrier and became human viruses carry mutated 2nd sialic acid-binding sites. Screening of animal IAVs to monitor their potential to cross the host species barrier should therefore focus not only on the HA protein, but also on the functional properties of NA.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-Jen Chang ◽  
Cheng-Yun Yeh ◽  
Ju-Chien Cheng ◽  
Yu-Qi Huang ◽  
Kai-Cheng Hsu ◽  
...  

AbstractEradicating influenza A virus (IAV) is difficult, due to its genetic drift and reassortment ability. As the infectious cycle is initiated by the influenza glycoprotein, hemagglutinin (HA), which mediates the binding of virions to terminal sialic acids moieties, HA is a tempting target of anti-influenza inhibitors. However, the complexity of the HA structure has prevented delineation of the structural characterization of the HA protein–ligand complex. Our computational strategy efficiently analyzed > 200,000 records of compounds held in the United States National Cancer Institute (NCI) database and identified potential HA inhibitors, by modeling the sialic acid (SA) receptor binding site (RBS) for the HA structure. Our modeling revealed that compound NSC85561 showed significant antiviral activity against the IAV H1N1 strain with EC50 values ranging from 2.31 to 2.53 µM and negligible cytotoxicity (CC50 > 700 µM). Using the NSC85561 compound as the template to generate 12 derivatives, robust bioassay results revealed the strongest antiviral efficacies with NSC47715 and NSC7223. Virtual screening clearly identified three SA receptor binding site inhibitors that were successfully validated in experimental data. Thus, our computational strategy has identified SA receptor binding site inhibitors against HA that show IAV-associated antiviral activity.


2017 ◽  
Vol 91 (11) ◽  
Author(s):  
Donald J. Benton ◽  
Stephen A. Wharton ◽  
Stephen R. Martin ◽  
John W. McCauley

ABSTRACT Influenza A(H7N9) viruses have caused a large number of zoonotic infections since their emergence in 2013. They remain a public health concern due to the repeated high levels of infection with these viruses and their perceived pandemic potential. A major factor that determines influenza A virus fitness and therefore transmissibility is the interaction of the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) with the cell surface receptor sialic acid. Typically, the HA is responsible for binding to the sialic acid to allow virus internalization and the NA is a sialidase responsible for cleaving sialic acid to aid virus spread and release. N9 NA has previously been shown to have receptor binding properties mediated by a sialic acid binding site, termed the hemadsorption (Hb) site, which is discrete from the enzymatically active sialidase site. This study investigated the N9 NA from a zoonotic H7N9 virus strain in order to determine its possible role in virus receptor binding. We demonstrate that this N9 NA has an active Hb site which binds to sialic acid, which enhances overall virus binding to sialic acid receptor analogues. We also show that the N9 NA can also contribute to receptor binding due to unusual kinetic characteristics of the sialidase site which specifically enhance binding to human-like α2,6-linked sialic acid receptors. IMPORTANCE The interaction of influenza A virus glycoproteins with cell surface receptors is a major determinant of infectivity and therefore transmissibility. Understanding these interactions is important for understanding which factors are necessary to determine pandemic potential. Influenza A viruses generally mediate binding to cell surface sialic acid receptors via the hemagglutinin (HA) glycoprotein, with the neuraminidase (NA) glycoprotein being responsible for cleaving the receptor to allow virus release. Previous studies showed that the NA proteins of the N9 subtype can bind sialic acid via a separate binding site distinct from the sialidase active site. This study demonstrates for purified protein and virus that the NA of the zoonotic H7N9 viruses has a binding capacity via both the secondary binding site and unusual kinetic properties of the sialidase site which promote receptor binding via this site and which enhance binding to human-like receptors. This could have implications for understanding human-to-human transmission of these viruses.


2019 ◽  
Vol 15 (6) ◽  
pp. e1007860 ◽  
Author(s):  
Wenjuan Du ◽  
Hongbo Guo ◽  
Vera S. Nijman ◽  
Jennifer Doedt ◽  
Erhard van der Vries ◽  
...  

2020 ◽  
Vol 16 (8) ◽  
pp. e1008816 ◽  
Author(s):  
Wenjuan Du ◽  
Margreet A. Wolfert ◽  
Ben Peeters ◽  
Frank J. M. van Kuppeveld ◽  
Geert-Jan Boons ◽  
...  

FEBS Journal ◽  
2020 ◽  
Author(s):  
Wenjuan Du ◽  
Erik de Vries ◽  
Frank J. M. van Kuppeveld ◽  
Mikhail Matrosovich ◽  
Cornelis A. M. de Haan

Virology ◽  
1998 ◽  
Vol 247 (2) ◽  
pp. 170-177 ◽  
Author(s):  
A.S. Gambaryan ◽  
V.P. Marinina ◽  
A.B. Tuzikov ◽  
N.V. Bovin ◽  
I.A. Rudneva ◽  
...  

2004 ◽  
Vol 78 (23) ◽  
pp. 13351-13355 ◽  
Author(s):  
Tatiana L. Bousse ◽  
Garry Taylor ◽  
Sateesh Krishnamurthy ◽  
Allen Portner ◽  
Siba K. Samal ◽  
...  

ABSTRACT The paramyxovirus hemagglutinin-neuraminidase (HN) is a multifunctional protein responsible for attachment to receptors containing sialic acid, neuraminidase (NA) activity, and the promotion of membrane fusion, which is induced by the fusion protein. Analysis of the three-dimensional structure of Newcastle disease virus (NDV) HN protein revealed the presence of a large pocket, which mediates both receptor binding and NA activities. Recently, a second sialic acid binding site on HN was revealed by cocrystallization of the HN with a thiosialoside Neu5Ac-2-S-α(2,6)Gal1OMe, suggesting that NDV HN contains an additional sialic acid binding site. To evaluate the role of the second binding site on the life cycle of NDV, we rescued mutant viruses whose HNs were mutated at Arg516, a key residue that is involved in the second binding site. Loss of the second binding site on mutant HNs was confirmed by the hemagglutination inhibition test, which uses an inhibitor designed to block the NA active site. Characterization of the biological activities of HN showed that the mutation at Arg516 had no effect on NA activity. However, the fusion promotion activity of HN was substantially reduced by the mutation. Furthermore, the mutations at Arg516 slowed the growth rate of virus in tissue culture cells. These results suggest that the second binding site facilitates virus infection and growth by enhancing the fusion promotion activity of the HN.


1992 ◽  
Vol 51 (3) ◽  
pp. 230-236 ◽  
Author(s):  
Kevan L. Hartshorn ◽  
David E. Daigneault ◽  
Mitchell R. White ◽  
Alfred I. Tauber

Sign in / Sign up

Export Citation Format

Share Document