scholarly journals Functional Genomic Analysis of Herpes Simplex Virus Type 1 Counteraction of the Host Innate Response

2006 ◽  
Vol 80 (15) ◽  
pp. 7600-7612 ◽  
Author(s):  
Tracy Jo Pasieka ◽  
Tracey Baas ◽  
Victoria S. Carter ◽  
Sean C. Proll ◽  
Michael G. Katze ◽  
...  

ABSTRACTHerpes simplex virus type 1 (HSV-1) mutants lacking the ICP34.5 gene are severely attenuated in mouse models and have a significant growth defect in confluent mouse embryo fibroblasts. Previously, ICP34.5 was demonstrated to have a crucial role in evading the innate immune response to infection by mediating the dephosphorylation of eIF2α, a translation initiation factor phosphorylated by PKR during the antiviral response. To further understand the role of ICP34.5 in evasion of the antiviral response, we used transcriptional profiling to examine host cell gene expression in both wild-type and ICP34.5-null virus-infected mouse embryo fibroblasts over a time course of infection. Our study revealed that cells responded to infection within 3 h through PKR-dependent eIF2α phosphorylation and that the majority of up-regulated genes at 3 h postinfection were involved in the antiviral response. HSV-1 counters this response through early expression of ICP34.5 and dephosphorylation of eIF2α. By 12 h postinfection, the differences between the number and functional classification of genes differentially up- and down-regulated between wild-type and ICP34.5-null virus-infected cells were maximal. Specifically, in wild-type virus-infected cells, the majority of changed genes were involved in metabolic and biosynthetic processes, while in ICP34.5-null virus-infected cells, mostly antiviral genes were up-regulated. Further, ICP34.5-null virus-infected cells produced greater amounts of beta interferon than wild-type virus-infected cells. These results indicate that ICP34.5 expression and function at early times postinfection have a pivotal role in the ability of HSV-1 to gain control of the host cell and maintain an environment for successful viral replication.

2002 ◽  
Vol 76 (16) ◽  
pp. 8090-8100 ◽  
Author(s):  
Helen L. Attrill ◽  
Sarah A. Cumming ◽  
J. Barklie Clements ◽  
Sheila V. Graham

ABSTRACT The US11 protein of herpes simplex virus type 1 (HSV-1) is a small, highly basic phosphoprotein expressed at late times during infection. US11 localizes to the nucleolus in infected cells, can associate with ribosomes, and has been shown to bind RNA. The RNA substrates of US11 identified thus far have no apparent role in the virus lytic cycle, so we set out to identify a novel, biologically relevant RNA substrate(s) for this protein in HSV-1-infected cells. We designed a reverse transcriptase PCR-based protocol that allowed specific selection of a 600-bp RNA binding partner for US11. This RNA sequence, designated 12/14, is present in the coterminal HSV-1 mRNAs UL12, UL13, and UL14. We show that the binding of US11 to 12/14 is sequence-specific and mediated by the C-terminal domain of the protein. To elucidate the role of US11 in the virus life cycle, we infected cells with wild-type virus, a cosmid-reconstructed US11 HSV-1 null mutant, and a cosmid-reconstructed wild-type virus and analyzed expression of UL12, -13, and -14 during a time course of infection. These experiments revealed that this interaction has biological activity; at early times of infection, US11 down-regulates UL13 protein kinase mRNA and protein.


2006 ◽  
Vol 80 (1) ◽  
pp. 440-450 ◽  
Author(s):  
John W. Balliet ◽  
Priscilla A. Schaffer

ABSTRACT In vitro studies of herpes simplex virus type 1 (HSV-1) viruses containing mutations in core sequences of the viral origins of DNA replication, oriL and oriS, that eliminate the ability of these origins to initiate viral-DNA synthesis have demonstrated little or no effect on viral replication in cultured cells, leading to the conclusion that the two types of origins are functionally redundant. It remains unclear, therefore, why origins that appear to be redundant are maintained evolutionarily in HSV-1 and other neurotropic alphaherpesviruses. To test the hypothesis that oriL and oriS have distinct functions in the HSV-1 life cycle in vivo, we determined the in vivo phenotypes of two mutant viruses, DoriL-ILR and DoriS-I, containing point mutations in oriL and oriS site I, respectively, that eliminate origin DNA initiation function. Following corneal inoculation of mice, tear film titers of DoriS-I were reduced relative to wild-type virus. In all other tests, however, DoriS-I behaved like wild-type virus. In contrast, titers of DoriL-ILR in tear film, trigeminal ganglia (TG), and hindbrain were reduced and mice infected with DoriL-ILR exhibited greatly reduced mortality relative to wild-type virus. In the TG explant and TG cell culture models of reactivation, DoriL-ILR reactivated with delayed kinetics and, in the latter model, with reduced efficiency relative to wild-type virus. Rescuant viruses DoriL-ILR-R and DoriS-I-R behaved like wild-type virus in all tests. These findings demonstrate that functional differences exist between oriL and oriS and reveal a prominent role for oriL in HSV-1 pathogenesis.


2001 ◽  
Vol 75 (19) ◽  
pp. 9029-9036 ◽  
Author(s):  
Homayon Ghiasi ◽  
Yanira Osorio ◽  
Guey-Chuen Perng ◽  
Anthony B. Nesburn ◽  
Steven L. Wechsler

ABSTRACT The effect of interleukin-4 (IL-4) on herpes simplex virus type 1 (HSV-1) infection in mice was evaluated by construction of a recombinant HSV-1 expressing the gene for murine IL-4 in place of the latency-associated transcript (LAT). The mutant virus (HSV-IL-4) expressed high levels of IL-4 in cultured cells. The replication of HSV-IL-4 in tissue culture and in trigeminal ganglia was similar to that of wild-type virus. In contrast, HSV-IL-4 appeared to replicate less well in mouse eyes and brains. Although BALB/c mice are highly susceptible to HSV-1 infection, ocular infection with HSV-IL-4 resulted in 100% survival. Furthermore, 57% of the mice survived coinfection with a mixture of HSV-IL-4 and a lethal dose of wild-type McKrae, compared with only 10% survival following infection with McKrae alone. Similar to wild-type BALB/c mice, 100% of IL-4−/− mice also survived HSV-IL-4 infection. T-cell depletion studies suggested that protection against HSV-IL-4 infection was mediated by a CD4+-T-cell response.


2007 ◽  
Vol 81 (13) ◽  
pp. 6817-6826 ◽  
Author(s):  
Kening Wang ◽  
Gowtham Mahalingam ◽  
Susan E. Hoover ◽  
Erik K. Mont ◽  
Steven M. Holland ◽  
...  

ABSTRACT Mutations in the thymidine kinase gene (tk) of herpes simplex virus type 1 (HSV-1) explain most cases of virus resistance to acyclovir (ACV) treatment. Mucocutaneous lesions of patients with ACV resistance contain mixed populations of tk mutant and wild-type virus. However, it is unknown whether human ganglia also contain mixed populations since the replication of HSV tk mutants in animal neurons is impaired. Here we report the detection of mutated HSV tk sequences in human ganglia. Trigeminal and dorsal root ganglia were obtained at autopsy from an immunocompromised woman with chronic mucocutaneous infection with ACV-resistant HSV-1. The HSV-1 tk open reading frames from ganglia were amplified by PCR, cloned, and sequenced. tk mutations were detected in a seven-G homopolymer region in 11 of 12 ganglia tested, with clonal frequencies ranging from 4.2 to 76% HSV-1 tk mutants per ganglion. In 8 of 11 ganglia, the mutations were heterogeneous, varying from a deletion of one G to an insertion of one to three G residues, with the two-G insertion being the most common. Each ganglion had its own pattern of mutant populations. When individual neurons from one ganglion were analyzed by laser capture microdissection and PCR, 6 of 14 HSV-1-positive neurons were coinfected with HSV tk mutants and wild-type virus, 4 of 14 were infected with wild-type virus alone, and 4 of 14 were infected with tk mutant virus alone. These data suggest that diverse tk mutants arise independently under drug selection and establish latency in human sensory ganglia alone or together with wild-type virus.


2000 ◽  
Vol 74 (21) ◽  
pp. 10041-10054 ◽  
Author(s):  
Lisa E. Pomeranz ◽  
John A. Blaho

ABSTRACT VP22, the 301-amino-acid phosphoprotein product of the herpes simplex virus type 1 (HSV-1) UL49 gene, is incorporated into the tegument during virus assembly. We previously showed that highly modified forms of VP22 are restricted to infected cell nuclei (L. E. Pomeranz and J. A. Blaho, J. Virol. 73:6769–6781, 1999). VP22 packaged into infectious virions appears undermodified, and nuclear- and virion-associated forms are easily differentiated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (J. A. Blaho, C. Mitchell, and B. Roizman, J. Biol. Chem. 269:17401–17410, 1994). As VP22 packaging-associated undermodification is unique among HSV-1 tegument proteins, we sought to determine the role of VP22 during viral replication. We now show the following. (i) VP22 modification occurs in the absence of other viral factors in cell lines which stably express its gene. (ii) RF177, a recombinant HSV-1 strain generated for this study, synthesizes only the amino-terminal 212 amino acids of VP22 (Δ212). (iii) Δ212 localizes to the nucleus and incorporates into virions during RF177 infection of Vero cells. Thus, the carboxy-terminal region is not required for nuclear localization of VP22. (iv) RF177 synthesizes the tegument proteins VP13/14, VP16, and VHS (virus host shutoff) and incorporates them into infectious virions as efficiently as wild-type virus. However, (v) the loss of VP22 in RF177 virus particles is compensated for by a redistribution of minor virion components. (vi) Mature RF177 virions are identical to wild-type particles based on electron microscopic analyses. (vii) Single-step growth kinetics of RF177 in Vero cells are essentially identical to those of wild-type virus. (viii) RF177 plaque size is reduced by nearly 40% compared to wild-type virus. Based on these results, we conclude that VP22 is not required for tegument formation, virion assembly/maturation, or productive HSV-1 replication, while the presence of full-length VP22 in the tegument is needed for efficient virus spread in Vero cell monolayers.


1998 ◽  
Vol 72 (9) ◽  
pp. 7563-7568 ◽  
Author(s):  
Prashant Desai ◽  
Stanley Person

ABSTRACT The herpes simplex virus type 1 (HSV-1) UL35 open reading frame (ORF) encodes a 12-kDa capsid protein designated VP26. VP26 is located on the outer surface of the capsid specifically on the tips of the hexons that constitute the capsid shell. The bioluminescent jellyfish (Aequorea victoria) green fluorescent protein (GFP) was fused in frame with the UL35 ORF to generate a VP26-GFP fusion protein. This fusion protein was fluorescent and localized to distinct regions within the nuclei of transfected cells following infection with wild-type virus. The VP26-GFP marker was introduced into the HSV-1 (KOS) genome resulting in recombinant plaques that were fluorescent. A virus, designated K26GFP, was isolated and purified and was shown to grow as well as the wild-type virus in cell culture. An analysis of the intranuclear capsids formed in K26GFP-infected cells revealed that the fusion protein was incorporated into A, B, and C capsids. Furthermore, the fusion protein incorporated into the virion particle was fluorescent as judged by fluorescence-activated cell sorter (FACS) analysis of infected cells in the absence of de novo protein synthesis. Cells infected with K26GFP exhibited a punctate nuclear fluorescence at early times in the replication cycle. At later times during infection a generalized cytoplasmic and nuclear fluorescence, including fluorescence at the cell membranes, was observed, confirming visually that the fusion protein was incorporated into intranuclear capsids and mature virions.


2000 ◽  
Vol 74 (8) ◽  
pp. 3909-3917 ◽  
Author(s):  
Francesca Cocchi ◽  
Laura Menotti ◽  
Patrice Dubreuil ◽  
Marc Lopez ◽  
Gabriella Campadelli-Fiume

ABSTRACT The immunoglobulin-like receptors that mediate entry of herpes simplex virus type 1 (HSV-1) into human cells were found to mediate the direct cell-to-cell spread of wild-type virus. The receptors here designated Nectin1α and -δ and Nectin2α were originally designated HIgR, PRR1/HveC, and PRR2α/HveB, respectively. We report the following. (i) Wild-type HSV-1 spreads from cell to cell in J cells expressing nectin1α or nectin1δ but not in parental J cells that are devoid of entry receptors. A monoclonal antibody to nectin1, which blocks entry, also blocked cell-to-cell spread in nectin1-expressing J cells. Moreover, wild-type virus did not spread from a receptor-positive to a receptor-negative cell. (ii) The antibody to nectin1 blocked transmission of wild-type virus in a number of human cell lines, with varying efficiencies, suggesting that nectin1 is the principal mediator of wild-type virus spread in a variety of human cell lines. (iii) Nectin1 did not mediate cell fusion induced by the syncytial strains HSV-1(MP) and HFEM-syn. (iv) Nectin2α could serve as a receptor for spread of a mutant virus carrying the L25P substitution in glycoprotein D, but not of wild-type virus, in agreement with its ability to mediate entry of the mutant but not of wild-type virus.


2004 ◽  
Vol 78 (16) ◽  
pp. 8582-8592 ◽  
Author(s):  
Audrey Esclatine ◽  
Brunella Taddeo ◽  
Bernard Roizman

ABSTRACT Herpes simplex virus 1 causes a shutoff of cellular protein synthesis through the degradation of RNA that is mediated by the virion host shutoff (Vhs) protein encoded by the UL41 gene. We reported elsewhere that the Vhs-dependent degradation of RNA is selective, and we identified RNAs containing AU-rich elements (AREs) that were upregulated after infection but degraded by deadenylation and progressive 3′-to-5′ degradation. We also identified upregulated RNAs that were not subject to Vhs-dependent degradation (A. Esclatine, B. Taddeo, L. Evans, and B. Roizman, Proc. Natl. Acad. Sci. USA 101:3603-3608, 2004). Among the latter was the RNA encoding tristetraprolin, a protein that binds AREs and is known to be associated with the degradation of RNAs containing AREs. Prompted by this observation, we examined the status of the ARE binding proteins tristetraprolin and TIA-1/TIAR in infected cells. We report that tristetraprolin was made and accumulated in the cytoplasm of wild-type virus-infected human foreskin fibroblasts as early as 2 h and in HEp-2 cells as early as 6 h after infection. The amounts of tristetraprolin that accumulated in the cytoplasm of cells infected with a mutant virus lacking UL41 were significantly lower than those in wild-type virus-infected cells. The localization of tristetraprolin was not modified in cells infected with a mutant lacking the gene encoding infected cell protein 4 (ICP4). TIA-1 and TIAR are two other proteins that are associated with the regulation of ARE-containing RNAs and that normally reside in nuclei. In infected cells, they started to accumulate in the cytoplasm after 6 h of infection. In cells infected with the mutant virus lacking UL41, TIA-1/TIAR accumulated in the cytoplasm in granular structures reminiscent of stress granules in a significant percentage of the cells. In addition, an antibody to tristetraprolin coprecipitated the Vhs protein from lysates of cells late in infection. The results indicate that the Vhs-dependent degradation of ARE-containing RNAs correlates with the transactivation, cytoplasmic accumulation, and persistence of tristetraprolin in infected cells.


2015 ◽  
Vol 89 (20) ◽  
pp. 10668-10679 ◽  
Author(s):  
David C. Bloom ◽  
Joyce Feller ◽  
Peterjon McAnany ◽  
Nuria Vilaboa ◽  
Richard Voellmy

ABSTRACTWe present the development and characterization of a replication-competent controlled herpes simplex virus 1 (HSV-1). Replication-essential ICP4 and ICP8 genes of HSV-1 wild-type strain 17syn+ were brought under the control of a dually responsive gene switch. The gene switch comprises (i) a transactivator that is activated by a narrow class of antiprogestins, including mifepristone and ulipristal, and whose expression is mediated by a promoter cassette that comprises an HSP70B promoter and a transactivator-responsive promoter and (ii) transactivator-responsive promoters that drive the ICP4 and ICP8 genes. Single-step growth experiments in different cell lines demonstrated that replication of the recombinant virus, HSV-GS3, is strictly dependent on an activating treatment consisting of administration of a supraphysiological heat dose in the presence of an antiprogestin. The replication-competent controlled virus replicates with an efficiency approaching that of the wild-type virus from which it was derived. Essentially no replication occurs in the absence of activating treatment or if HSV-GS3-infected cells are exposed only to heat or antiprogestin. These findings were corroborated by measurements of amounts of viral DNA and transcripts of the regulated ICP4 gene and the glycoprotein C (gC) late gene, which was not regulated. Similar findings were made in experiments with a mouse footpad infection model.IMPORTANCEThe alphaherpesviruses have long been considered vectors for recombinant vaccines and oncolytic therapies. The traditional approach uses vector backbones containing attenuating mutations that restrict replication to ensure safety. The shortcoming of this approach is that the attenuating mutations tend to limit both the immune presentation and oncolytic properties of these vectors. HSV-GS3 represents a novel type of vector that, when activated, replicates with the efficiency of a nonattenuated virus and whose safety is derived from deliberate, stringent regulation of multiple replication-essential genes. By directing activating heat to the region of virus administration, replication is strictly confined to infected cells within this region. The requirement for antiprogestin provides an additional level of safety, ensuring that virus replication cannot be triggered inadvertently. Replication-competent controlled vectors such as HSV-GS3 may have the potential to be superior to conventional attenuated HSV vaccine and oncolytic vectors without sacrificing safety.


2001 ◽  
Vol 75 (8) ◽  
pp. 3832-3840 ◽  
Author(s):  
Pascal Lopez ◽  
Charles Van Sant ◽  
Bernard Roizman

ABSTRACT Earlier studies have shown that wild-type infected-cell protein 0 (ICP0), a key herpes simplex virus regulatory protein, translocates from the nucleus to the cytoplasm of human embryonic lung (HEL) fibroblasts within several hours after infection (Y. Kawaguchi, R. Bruni, and B. Roizman, J. Virol. 71:1019–1024, 1997). Translocation of ICP0 was also observed in cells infected with thed120 mutant, in which both copies of the gene encoding ICP4, the major regulatory protein, had been deleted (V. Galvan, R. Brandimarti, J. Munger, and B. Roizman, J. Virol. 74:1931–1938, 2000). Furthermore, a mutant (R7914) carrying the D199A substitution in ICP0 does not bind or stabilize cyclin D3 and is retained in the nucleus (C. Van Sant, P. Lopez, S. J. Advani, and B. Roizman, J. Virol. 75:1888–1898, 2001). Studies designed to elucidate the requirements for the translocation of ICP0 between cellular compartments revealed the following. (i) Translocation of ICP0 to the cytoplasm in productive infection maps to the D199 amino acid, inasmuch as wild-type ICP0 delivered in trans to cells infected with an ICP0 null mutant was translocated to the cytoplasm whereas the D199A-substituted mutant ICP0 was not. (ii) Translocation of wild-type ICP0 requires a function expressed late in infection, inasmuch as phosphonoacetate blocked the translocation of ICP0 in wild-type virus-infected cells but not in d120 mutant-infected cells. Moreover, whereas in d120 mutant-infected cells ICP0 was translocated rapidly from the cytoplasm to the nucleus at approximately 5 h after infection, the translocation of ICP0 in wild-type virus-infected cells extended from 5 to at least 9 h after infection. (iii) In wild-type virus-infected cells, the MG132 proteasomal inhibitor blocked the translocation of ICP0 to the cytoplasm early in infection, but when added late in infection, it caused ICP0 to be relocated back to the nucleus from the cytoplasm. (iv) MG132 blocked the translocation of ICP0 in d120 mutant-infected cells early in infection but had no effect on the ICP0 aggregated in vesicle-like structures late in infection. However, ind120 mutant-infected cells treated with MG132 at late times, proteasomes formed a shell-like structure around the aggregated ICP0. These structures were not seen in wild-type virus or R7914 mutant-infected cells. The results indicate the following. (i) In the absence of β or γ protein synthesis, ICP0 dynamically associates with proteasomes and is translocated to the cytoplasm. (ii) In cells productively infected beyond α gene expression, ICP0 is retained in the nucleus until after the onset of viral DNA synthesis and the synthesis of γ2 proteins. (iii) Late in infection, ICP0 is actively sequestered in the cytoplasm by a process mediated by proteasomes, inasmuch as interference with proteasomal function causes rapid relocation of ICP0 to the nucleus.


Sign in / Sign up

Export Citation Format

Share Document