cytoplasmic accumulation
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 30)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Alejandro Fonseca ◽  
Tomas C. Moyano ◽  
Stefanie Rosa ◽  
Rodrigo A Gutiérrez

Nitrate is a signaling molecule that regulates gene expression in plants. The nitrate response has been extensively characterized at the transcriptome level. However, we know little about RNA nucleocytoplasmic dynamics during nitrate response. To understand the role of mRNA localization during the nitrate response, we isolated mRNA from the nucleus, cytoplasm, and whole-cells from nitrate-treated Arabidopsis roots and performed RNA-seq. We identified 402 differentially localized transcripts (DLTs) in response to nitrate. DLTs were enriched in GO-terms related to metabolism, response to stimulus, and transport. DLTs showed five localization patterns: nuclear reduction, cytoplasmic reduction, nuclear accumulation, cytoplasmic accumulation, or delayed-cytoplasmic accumulation in response to nitrate. DLTs exhibited large changes in RNA polymerase II occupancy of cognate genes and high mRNA turnover rates, indicating these are rapidly replaced mRNAs. The NITRATE REDUCTASE 1 (NIA1) transcript exhibited the largest changes in synthesis and decay. Using single-molecule RNA FISH, we showed that NIA1 nuclear accumulation occurs mainly at transcription sites. The decay profiles for NIA1 showed a higher half-life when the transcript accumulated in the nucleus than in the cytoplasm. We propose that regulating nucleocytoplasmic mRNA distribution allows tuning transcript availability of fastly replaced mRNAs, controlling plants' adaptive response to nitrogen nutrient signals.


2021 ◽  
pp. mcs.a006103
Author(s):  
Kamal Hassan ◽  
Amal Robay ◽  
Aljazi Al-Maraghi ◽  
Nuha Nimeri ◽  
Asmaa Azzam ◽  
...  

Microvillus inclusion disease (MVID, MIM♯ 251850), also known as congenital microvil-lus atrophy, was first described by Davidson et al. in 1978. It is a rare au-tosomal recessive disease that presents with an intractable life-threatening watery diarrhea either within the first days of life (early-onset form) or at several months of life (late-onset form) . The hallmarks of MVID are a lack of microvilli on the surface of villous enterocytes, occurrence of microvillous inclusions and the cytoplasmic accumulation of periodic acid-schiff-positive vesicles. In 2008, Muller et al showed that mutations in MYO5B (MIM ♯ 606540), en-coding the unconventional type Vb myosin motor protein, were associated with MVID in an ex-tended Turkish kindred. Since then, more mutations were described in different populations . In this report we describe a novel mutation in two unrelated Syrian patients with MVID.


Development ◽  
2021 ◽  
Author(s):  
Eunice H. Y. Chan ◽  
Yanxiang Zhou ◽  
Birgit L. Aerne ◽  
Maxine V. Holder ◽  
Anne Weston ◽  
...  

Cell-cell junctions are dynamic structures that maintain cell cohesion and shape in epithelial tissues. During development, junctions undergo extensive rearrangements to drive the epithelial remodelling required for morphogenesis. This is particularly evident during axis elongation, where neighbour exchanges, cell-cell rearrangements and oriented cell divisions lead to large-scale alterations in tissue shape. Polarised vesicle trafficking of junctional components by the exocyst complex has been proposed to promote junctional rearrangements during epithelial remodelling, but the receptors that allow exocyst docking to the target membranes remain poorly understood. Here, we show that the adherens junction component Ras Association domain family 8 (RASSF8) is required for the epithelial re-ordering that occurs during Drosophila pupal wing proximo-distal elongation. We identify the exocyst component Sec15 as a RASSF8 interactor. RASSF8 loss elicits cytoplasmic accumulation of Sec15 and Rab11-containing vesicles. These vesicles also contain the nectin-like homophilic adhesion molecule Echinoid, whose depletion phenocopies the wing elongation and epithelial packing defects observed in RASSF8 mutants. Thus, our results suggest that RASSF8 promotes exocyst-dependent docking of Echinoid-containing vesicles during morphogenesis.


Blood ◽  
2021 ◽  
Author(s):  
Maria Paola Martelli ◽  
Roberta Rossi ◽  
Alessandra Venanzi ◽  
Manja Meggendorfer ◽  
Vincenzo Maria Perriello ◽  
...  

Nucleophosmin (NPM1) mutations in acute myeloid leukemia (AML) affect exon 12, but sporadically also exon 9 and 11, all causing changes at protein C-terminal end (loss of tryptophans and creation of a nuclear export signal-NES motif) that lead to aberrant cytoplasmic NPM1 (NPM1c+), detectable by immunohistochemistry. Combining immunohistochemistry and molecular analyses in 929 AML patients, we found non-exon 12 NPM1 mutations in 5/387 (1.3%) NPM1c+ cases. Besides mutations in exon 9 (n=1) and exon 11 (n=1), novel mutations in exon 5 were discovered (n=3). One more exon 5 mutation was identified in additional 141 AML patients selected for wild-type NPM1 exon 12. Furthermore, 3 NPM1 rearrangements (i.e. NPM1/RPP30, NPM1/SETBP1, NPM1/CCDC28A) were detected and characterized among 13,979 AML samples screened by cytogenetic/FISH and RNA sequencing. Functional studies demonstrated that in AML cases the new NPM1 proteins harboured an efficient extra NES, either newly created or already present in the fusion partner, ensuring its cytoplasmic accumulation. Our findings support NPM1 cytoplasmic relocation as critical for leukemogenesis and reinforce the role of immunohistochemistry in predicting any AML-associated NPM1 genetic lesions. Also, this study highlights the need for developing new specific assays for molecular diagnosis and monitoring of NPM1-mutated AML.


2021 ◽  
pp. MOLPHARM-AR-2021-000297
Author(s):  
Charles S. Fermaintt ◽  
Leila Takahashi-Ruiz ◽  
Huiyun Liang ◽  
Susan L. Mooberry ◽  
April L. Risinger

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Benjamin C McIlwain ◽  
Roja Gundepudi ◽  
B Ben Koff ◽  
Randy B Stockbridge

Fluc family fluoride channels protect microbes against ambient environmental fluoride by undermining the cytoplasmic accumulation of this toxic halide. These proteins are structurally idiosyncratic, and thus the permeation pathway and mechanism have no analogy in other known ion channels. Although fluoride binding sites were identified in previous structural studies, it was not evident how these ions access aqueous solution, and the molecular determinants of anion recognition and selectivity have not been elucidated. Using x-ray crystallography, planar bilayer electrophysiology and liposome-based assays, we identify additional binding sites along the permeation pathway. We use this information to develop an oriented system for planar lipid bilayer electrophysiology and observe anion block at one of these sites, revealing insights into the mechanism of anion recognition. We propose a permeation mechanism involving alternating occupancy of anion binding sites that are fully assembled only as the substrate approaches.


2021 ◽  
Author(s):  
Artur Louche ◽  
Amandine Blanco ◽  
Thais Lourdes Santos Lacerda ◽  
Claire Lionnet ◽  
Célia Bergé ◽  
...  

The cell nucleus is a primary target for intracellular bacterial pathogens to counteract immune responses and hijack host signalling pathways to cause disease. The mechanisms controlling nuclear protein localisation in the context of stress responses induced upon bacterial infection are still poorly understood. Here we show that theBrucella abortuseffectors NyxA and NyxB interfere with the host sentrin specific protease 3 (SENP3), which is essential for intracellular replication. Translocated Nyx effectors directly interact with SENP3viaa defined acidic patch identified from the crystal structure of NyxB, preventing its nucleolar localisation at the late stages of the infection. By sequestering SENP3, the Nyx effectors induce the cytoplasmic accumulation of the nucleolar AAA-ATPase NVL, the large subunit ribosomal protein L5 (RPL5) and the ribophagy receptor NUFIP1 in Nyx-enriched structures in the vicinity of replicating bacteria. This shuttling of ribosomal biogenesis-associated nucleolar proteins is negatively regulated by SENP3 and dependent on the autophagy-initiation protein Beclin1, indicative of a ribophagy-derived process induced duringBrucellainfection. Our results highlight a new nucleomodulatory function by two uniqueBrucellaeffectors, and reveal that SENP3 is a critical regulator of the subcellular localisation of multiple nucleolar proteins duringBrucellainfection, promoting intracellular replication.


2021 ◽  
Author(s):  
Benjamin C. McIlwain ◽  
Roja Gundepudi ◽  
B. Ben Koff ◽  
Randy B. Stockbridge

AbstractFluc family fluoride channels protect microbes against ambient environmental fluoride by undermining the cytoplasmic accumulation of this toxic halide. These proteins are structurally idiosyncratic, and thus the permeation pathway and mechanism have no analogy in other known ion channels. Although fluoride binding sites were identified in previous structural studies, it was not evident how these ions access aqueous solution, and the molecular determinants of anion recognition and selectivity have not been elucidated. Using x-ray crystallography, planar bilayer electrophysiology and liposome-based assays, we identify additional binding sites along the permeation pathway. We use this information to develop an oriented system for planar lipid bilayer electrophysiology and observe anion block at one of these sites, revealing insights into the mechanism of anion recognition. We propose a permeation mechanism involving alternating occupancy of anion binding sites that are fully assembled only as the substrate approaches.


2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Benjamin C. McIlwain ◽  
Michal T. Ruprecht ◽  
Randy B. Stockbridge

Microorganisms contend with numerous and unusual chemical threats and have evolved a catalog of resistance mechanisms in response. One particularly ancient, pernicious threat is posed by fluoride ion (F−), a common xenobiotic in natural environments that causes broad-spectrum harm to metabolic pathways. This review focuses on advances in the last ten years toward understanding the microbial response to cytoplasmic accumulation of F−, with a special emphasis on the structure and mechanisms of the proteins that microbes use to export fluoride: the CLCF family of F−/H+ antiporters and the Fluc/FEX family of F− channels. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document