tegument proteins
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 25)

H-INDEX

45
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Andrew D. Esteves ◽  
Orkide O Koyuncu ◽  
Lynn W. Enquist

Infection of peripheral axons by alpha herpesviruses (AHVs) is a critical stage in establishing a life-long infection in the host. Upon entering the cytoplasm of axons, AHV nucleocapsids and associated inner-tegument proteins must engage the cellular retrograde transport machinery to promote the long-distance movement of virion components to the nucleus. The current model outlining this process is incomplete and further investigation is required to discover all viral and cellular determinants involved as well as the temporality of the events. Using a modified tri-chamber system, we have discovered a novel role of the pseudorabies virus (PRV) serine/threonine kinase, US3, in promoting efficient retrograde transport of nucleocapsids. We discovered that transporting nucleocapsids move at similar velocities both in the presence and absence of a functional US3 kinase; however fewer nucleocapsids are moving when US3 is absent and move for shorter periods of time before stopping, suggesting US3 is required for efficient nucleocapsid engagement with the retrograde transport machinery. This led to fewer nucleocapsids reaching the cell bodies to produce a productive infection 12hr later. Furthermore, US3 was responsible for the induction of local translation in axons as early as 1hpi through the stimulation of a PI3K/Akt-mToRC1. These data describe a novel role for US3 in the induction of local translation in axons during AHV infection, a critical step in transport of nucleocapsids to the cell body.


2021 ◽  
Author(s):  
Ki Mun Kwon ◽  
Young Eui Kim ◽  
Myoung Kyu Lee ◽  
Woo-Chang Chung ◽  
Seokhwan Hyeon ◽  
...  

Viral deubiquitinases (DUBs) regulate cellular innate immunity to benefit viral replication. In human cytomegalovirus (HCMV), the UL48-encoded DUB regulates innate immune responses including NF-κB signaling. Although UL48 DUB is known to regulate its stability via auto-deubiquitination, its impact on other viral proteins is not well understood. In this study, we investigated the role of UL48 DUB in regulating the ubiquitination of viral proteins by comparing the levels of ubiquitinated viral peptides in wild-type and DUB active-site mutant virus-infected cells using mass spectrometry. We found that ubiquitinated peptides were increased in DUB-mutant virus infection for 90% of viral proteins with the innermost tegument proteins pp150 (encoded by UL32) and pUL48 itself being most significantly affected. The highly deubiquitinated lysine residues of pUL48 were mapped within its N-terminal DUB domain and the nuclear localization signal. Among them, the arginine substitution of lysine 2 (K2R) increased pUL48 stability and enhanced viral growth at low multiplicity of infection, indicating that K2 auto-deubiquitination has a role in regulating pUL48 stability. pUL48 also interacted with pp150 and increased pp150 expression by downregulating its ubiquitination. Furthermore, we found that, unlike the wild-type virus, mutant viruses expressing the UL48 protein with the DUB-domain deleted or DUB active-site mutated contain higher levels of ubiquitin conjugates, including the ubiquitinated forms of pp150, in their virions. Collectively, our results demonstrate that UL48 DUB mainly acts on the innermost tegument proteins pp150 and pUL48 itself during HCMV infection and may play a role in protecting virions from the inclusion of ubiquitin conjugates. Importance Herpesviruses encode highly conserved tegument proteins that contain deubiquitinase (DUB) activity. Although the role of viral DUBs in the regulation of host innate immune responses has been established, their roles in the stability or function of viral proteins are not well understood. In this study, we performed a comparative analysis of the levels of ubiquitinated viral peptides between wild-type and DUB-inactive HCMV infections and demonstrate that the innermost tegument proteins pp150 and pUL48 (DUB itself) are major targets of viral DUB. We also show that ubiquitinated viral proteins are effectively incorporated into the virions of DUB mutant viruses but not the wild-type virus. Our study demonstrates that viral DUBs may play important roles in promoting the stability of viral proteins and inhibiting the inclusion of ubiquitin conjugates into virions.


2021 ◽  
Vol 478 (12) ◽  
pp. 2297-2308
Author(s):  
Päivi Ylä-Anttila ◽  
Maria G. Masucci

Autophagy is an important component of the innate immune response that restricts infection by different types of pathogens. Viruses have developed multiple strategies to avoid autophagy to complete their replication cycle and promote spreading to new hosts. Here, we report that the ubiquitin deconjugases encoded in the N-terminal domain of the large tegument proteins of Epstein–Barr virus (EBV), Kaposi Sarcoma herpesvirus (KSHV) and human cytomegalovirus (HCMV), but not herpes simplex virus-1 (HSV-1), regulate selective autophagy by inhibiting the activity of the autophagy receptor SQSTM1/p62. We found that all the homologs bind to and deubiquitinate SQSTM1/p62 but with variable efficiency, which correlates with their capacity to prevent the colocalization of light chain 3 (LC3) with SQSTM1/p62 aggregates and promote the accumulation of a model autophagy substrate. The findings highlight important differences in the strategies by which herpesviruses interfere with selective autophagy.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Leike Li ◽  
Daniel C. Freed ◽  
Yaping Liu ◽  
Fengsheng Li ◽  
Diane F. Barrett ◽  
...  

AbstractA conditionally replication-defective human cytomegalovirus (HCMV) vaccine, V160, was shown to be safe and immunogenic in a two-part, double-blind, randomized, placebo-controlled phase I clinical trial (NCT01986010). However, the specificities and functional properties of V160-elicited antibodies remain undefined. Here, we characterized 272 monoclonal antibodies (mAbs) isolated from single memory B cells of six V160-vaccinated subjects. The mAbs bind to diverse HCMV antigens, including multiple components of the pentamer, gB, and tegument proteins. The most-potent neutralizing antibodies target the pentamer-UL subunits. The binding sites of the antibodies overlap with those of antibodies responding to natural HCMV infection. The majority of the neutralizing antibodies target the gHgL subunit. The non-neutralizing antibodies predominantly target the gB and pp65 proteins. Sequence analysis indicated that V160 induced a class of gHgL antibodies expressing the HV1-18/KV1-5 germline genes in multiple subjects. This study provides valuable insights into primary targets for anti-HCMV antibodies induced by V160 vaccination.


2021 ◽  
Author(s):  
Guangjun Xu ◽  
Chong Liu ◽  
Sheng Zhou ◽  
Quanjin Li ◽  
Yun Feng ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 597
Author(s):  
Daniela Dünn-Kittenplon ◽  
Asaf Ashkenazy-Titelman ◽  
Inna Kalt ◽  
Jean-Paul Lellouche ◽  
Yaron Shav-Tal ◽  
...  

Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-related herpesvirus. Like other herpesviruses, the KSHV icosahedral capsid includes a portal vertex, composed of 12 protein subunits encoded by open reading frame (ORF) 43, which enables packaging and release of the viral genome into the nucleus through the nuclear pore complex (NPC). Capsid vertex-specific component (CVSC) tegument proteins, which directly mediate docking at the NPCs, are organized on the capsid vertices and are enriched on the portal vertex. Whether and how the portal vertex is selected for docking at the NPC is unknown. Here, we investigated the docking of incoming ORF43-null KSHV capsids at the NPCs, and describe a significantly lower fraction of capsids attached to the nuclear envelope compared to wild-type (WT) capsids. Like WT capsids, nuclear envelope-associated ORF43-null capsids co-localized with different nucleoporins (Nups) and did not detach upon salt treatment. Inhibition of nuclear export did not alter WT capsid docking. As ORF43-null capsids exhibit lower extent of association with the NPCs, we conclude that although not essential, the portal has a role in mediating the interaction of the CVSC proteins with Nups, and suggest a model whereby WT capsids can dock at the nuclear envelope through a non-portal penton vertex, resulting in an infection ‘dead end’.


2021 ◽  
Author(s):  
Paivi Yla-Anttila ◽  
Maria Grazia Masucci

Autophagy is an important component of the innate immune response that restricts infection by different types of pathogens. Viruses have developed multiple strategies to avoid autophagy to complete their replication cycle and promote spreading to new hosts. Here we report that the ubiquitin deconjugases encoded in the N-terminal domain of the large tegument proteins of Epstein-Barr virus (EBV), Kaposi Sarcoma herpesvirus (KSHV) and human cytomegalovirus (HCMV), but not herpes simplex virus-1 (HSV-1), regulate selective autophagy by inhibiting the activity of the autophagy receptor SQSTM1/p62. We found that all the homologs bind to and deubiquitinate SQSTM1/p62 but with variable efficiency, which correlates with their capacity to prevent the colocalization of LC3 with SQSTM1/p62 aggregates and promote the accumulation of a model autophagy substrate. The findings highlight important differences in the strategies by which herpesviruses interfere with selective autophagy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rosamaria Pennisi ◽  
Maria Musarra-Pizzo ◽  
Zhixiang Lei ◽  
Grace Guoying Zhou ◽  
Maria Teresa Sciortino

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Author(s):  
Krishnaraju Madavaraju ◽  
Raghuram Koganti ◽  
Ipsita Volety ◽  
Tejabhiram Yadavalli ◽  
Deepak Shukla

Herpes simplex virus (HSV) can infect a broad host range and cause mild to life threating infections in humans. The surface glycoproteins of HSV are evolutionarily conserved and show an extraordinary ability to bind more than one receptor on the host cell surface. Following attachment, the virus fuses its lipid envelope with the host cell membrane and releases its nucleocapsid along with tegument proteins into the cytosol. With the help of tegument proteins and host cell factors, the nucleocapsid is then docked into the nuclear pore. The viral double stranded DNA is then released into the host cell’s nucleus. Released viral DNA either replicates rapidly (more commonly in non-neuronal cells) or stays latent inside the nucleus (in sensory neurons). The fusion of the viral envelope with host cell membrane is a key step. Blocking this step can prevent entry of HSV into the host cell and the subsequent interactions that ultimately lead to production of viral progeny and cell death or latency. In this review, we have discussed viral entry mechanisms including the pH-independent as well as pH-dependent endocytic entry, cell to cell spread of HSV and use of viral glycoproteins as an antiviral target.


2020 ◽  
Author(s):  
Jolien Van Cleemput ◽  
Orkide O. Koyuncu ◽  
Kathlyn Laval ◽  
Esteban A. Engel ◽  
Lynn W. Enquist

Latent and recurrent productive infection of long-living cells, such as neurons, enables alphaherpesviruses to persist in their host populations. Still, the viral factors involved in these events remain largely obscure. Using a complementation assay in compartmented primary peripheral nervous system (PNS) neuronal cultures, we previously reported that productive replication of axonally-delivered genomes is facilitated by PRV tegument proteins. Here, we sought to unravel the role of tegument protein UL13 in this escape from silencing. We first constructed four new PRV mutants in the virulent Becker strain using CRISPR/Cas9-mediated gene replacement: (i) PRV Becker defective for UL13 expression (PRV ΔUL13), (ii) PRV where UL13 is fused to eGFP (PRV UL13-eGFP) and two control viruses (iii and iv) PRV where VP16 is fused with mTurquoise at either the N-terminus (PRV mTurq-VP16) or C-terminus (PRV VP16-mTurq). Live cell imaging of PRV capsids showed efficient retrograde transport after axonal infection with PRV UL13-eGFP, although we did not detect dual-color particles. Surprisingly, immunofluorescence staining of particles in mid-axons indicated that UL13 might be co-transported with PRV capsids in PNS axons. Superinfecting nerve cell bodies with UV-inactivated PRV ΔUL13 failed to efficiently promote escape from genome silencing when compared to UV-PRV wild type and UV-PRV UL13-eGFP superinfection. However, UL13 does not act directly in the escape from genome silencing, as AAV-mediated UL13 expression in neuronal cell bodies was not sufficient to provoke escape from genome silencing. Based on this, we suggest that UL13 may contribute to initiation of productive infection through phosphorylation of other tegument proteins. Importance Alphaherpesviruses have mastered various strategies to persist in an immunocompetent host, including the induction of latency and reactivation in peripheral nervous system (PNS) ganglia. We recently discovered that the molecular mechanism underlying escape from latency by the alphaherpesvirus pseudorabies virus (PRV) relies on a structural viral tegument protein. This study aimed at unravelling the role of tegument protein UL13 in PRV escape from latency. First, we confirmed the use of CRISPR/Cas9-mediated gene replacement as a versatile tool to modify the PRV genome. Next, we used our new set of viral mutants and AAV vectors to conclude on the indirect role of UL13 in PRV escape from latency in primary neurons and on its spatial localization during retrograde capsid transport in axons. Based on these findings, we speculate that UL13 phosphorylates one or more tegument proteins, thereby priming these putative proteins to induce escape from genome silencing.


Sign in / Sign up

Export Citation Format

Share Document