infected cell protein
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 4)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Qing He ◽  
Ying Wu ◽  
Mingshu Wang ◽  
Shun Chen ◽  
Renyong Jia ◽  
...  

In the process of infecting the host, alphaherpesviruses have derived a series of adaptation and survival strategies, such as latent infection, autophagy and immune evasion, to survive in the host environment. Infected cell protein 22 (ICP22) or its homologue immediate early protein 63 (IE63) is a posttranslationally modified multifunctional viral regulatory protein encoded by all alphaherpesviruses. In addition to playing an important role in the efficient use of host cell RNA polymerase II, it also plays an important role in the defense process of the virus overcoming the host immune system. These two effects of ICP22/IE63 are important survival strategies for alphaherpesviruses. In this review, we summarize the complex mechanism by which the ICP22 protein regulates the transcription of alphaherpesviruses and their host genes and the mechanism by which ICP22/IE63 participates in immune escape. Reviewing these mechanisms will also help us understand the pathogenesis of alphaherpesvirus infections and provide new strategies to combat these viral infections.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2296
Author(s):  
Jeffery B. Ostler ◽  
Clinton Jones

Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons, including sensory neurons within trigeminal ganglia. During latency, lytic cycle viral gene expression is silenced. However, stressful stimuli can trigger reactivation from latency. The viral tegument protein, VP-16, transactivates all immediate early (IE) promoters during productive infection. Conversely, cellular factors are expected to trigger viral gene expression during early stages of reactivation from latency and in non-neuronal cells that do not support high levels of productive infection. The glucocorticoid receptor (GR), synthetic corticosteroid dexamethasone, and certain stress-induced transcription factors cooperatively transactivate infected cell protein 0 (ICP0) and ICP4 promoters. Since ICP27 protein expression is required for productive infection, we hypothesized that the ICP27 promoter is transactivated by stress-induced transcription factors. New studies have demonstrated that ICP27 enhancer sequences were transactivated by GR and Krüppel-like factor 15 (KLF15). Mutation of a consensus Sp1 binding site within ICP27 enhancer sequences impaired transactivation by GR and KLF15. Chromatin immunoprecipitation studies have demonstrated that GR and KLF15 occupy ICP27 promoter sequences during productive infection. Cells transfected with an ICP27 enhancer fragment revealed the GR and KLF15 occupancy of ICP27 enhancer sequences required the intact Sp1 binding site. Notably, GR and KLF15 form a feed-forward transcription loop in response to stress, suggesting these cellular factors promote viral replication following stressful stimuli.


2021 ◽  
Author(s):  
Laximan Sawant ◽  
Jeffery B. Ostler ◽  
Clinton Jones

Following bovine herpesvirus 1 (BoHV-1) acute infection of ocular, oral or nasal cavities, sensory neurons within trigeminal ganglia are an important site for latency. Stress, as mimicked by the synthetic corticosteroid dexamethasone, consistently induces reactivation from latency. Expression of two key viral transcriptional regulatory proteins, infected cell protein 0 (bICP0) and bICP4, are regulated by sequences within the immediate early promoter (IEtu1). A separate early promoter also drives bICP0 expression, presumably to ensure sufficient levels of this important transcriptional regulatory protein. Productive infection and bICP0 early promoter activity are cooperatively transactivated by Krüppel like factor 4 (KLF4) and a Type I nuclear hormone receptor (NHR), androgen receptor, glucocorticoid receptor, or progesterone receptor. The bICP0 early promoter contains 3 separate transcriptional enhancers that mediate cooperative transactivation. In contrast to the IEtu1 promoter, the bICP0 early promoter lacks consensus Type I NHR binding sites. Consequently, we hypothesized KLF4 and Sp1 binding sites are essential for Type I NHR and KLF4 to transactivate the bICP0 promoter. Mutating KLF4 and Sp1 binding sites in each enhancer domain significantly reduced transactivation by KLF4 and a Type I NHR. Chromatin immunoprecipitation (ChIP) studies demonstrated occupancy of bICP0 early promoter sequences by KLF4 and Type I NHR is significantly reduced when KLF4 and/or Sp1 binding sites were mutated. These studies suggest cooperative transactivation of the bICP0 E promoter by Type I NHRs and a stress induced pioneer transcription factor (KLF4) promote viral replication and spread in neurons or non-neural cells in reproductive tissue. IMPORTANCE Understanding how stressful stimuli and changes in cellular milieu mediate viral replication and gene expression in the natural host is important for developing therapeutic strategies that impair virus transmission and disease. For example, bovine herpesvirus 1 (BoHV-1) reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone, which mimics the effects of stress. Furthermore, BoHV-1 infection increases the incidence of abortion in pregnant cows suggesting sex hormones stimulate viral growth in certain tissue. Previous studies revealed Type I nuclear hormone receptors (androgen, glucocorticoid, or progesterone) and the pioneer transcription factor, Krüppel like factor 4 (KLF4), cooperatively transactivate the BoHV-1 infected cell protein 0 (bICP0) early promoter. Transactivation was mediated by Sp1 and/or KLF4 consensus binding sites within the 3 transcriptional enhancers. These studies underscore the complexity by which BoHV-1 exploits Type I NHR fluctuations to enhance viral gene expression, replication, and transmission in the natural host.


2019 ◽  
Vol 93 (6) ◽  
Author(s):  
Jeffery B. Ostler ◽  
Kelly S. Harrison ◽  
Kayla Schroeder ◽  
Prasanth Thunuguntla ◽  
Clinton Jones

ABSTRACTFollowing acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons. Physical, emotional, and chemical stresses are linked to increasing the incidence of reactivation from latency, but the mechanism of action is not well understood. In general, stress increases corticosteroid levels, leading to activation of the glucocorticoid receptor (GR), a pioneer transcription factor. Consequently, we hypothesized that stress-mediated activation of the GR can stimulate productive infection and viral gene expression. New studies demonstrated that the GR-specific antagonist (CORT-108297) significantly reduced HSV-1 productive infection in mouse neuroblastoma cells (Neuro-2A). Additional studies demonstrated that the activated GR and Krüppel-like transcription factor 15 (KLF15) cooperatively transactivated the infected cell protein 0 (ICP0) promoter, a crucial viral regulatory protein. Interestingly, the synthetic corticosteroid dexamethasone and GR or KLF15 alone had little effect on ICP0 promoter activity in transfected Neuro-2A or Vero cells. Chromatin immunoprecipitation (ChIP) studies revealed that the GR and KLF15 occupied ICP0 promoter sequences important for transactivation at 2 and 4 h after infection; however, binding was not readily detected at 6 h after infection. Similar results were obtained for cells transfected with the full-length ICP0 promoter. ICP0 promoter sequences lack a consensus “whole” GR response element (GRE) but contain putative half-GREs that were important for dexamethasone induced promoter activity. The activated GR stimulates expression of, and interacts with, KLF15; consequently, these data suggest KLF15 and the GR form a feed-forward loop that activates viral gene expression and productive infection following stressful stimuli.IMPORTANCEThe ability of herpes simplex virus 1 (HSV-1) to periodically reactivate from latency results in virus transmission and recurrent disease. The incidence of reactivation from latency is increased by chronic or acute stress. Stress increases the levels of corticosteroids, which bind and activate the glucocorticoid receptor (GR). Since GR activation is an immediate early response to stress, we tested whether the GR influences productive infection and the promoter that drives infected cell protein 0 (ICP0) expression. Pretreatment of cells with a GR-specific antagonist (CORT-108297) significantly reduced virus replication. Although the GR had little effect on ICP0 promoter activity alone, the Krüppel-like transcription factor 15 (KLF15) cooperated with the GR to stimulate promoter activity in transfected cells. In transfected or infected cells, the GR and KLF15 occupied ICP0 sequences important for transactivation. Collectively, these studies provide insight into how stress can directly stimulate productive infection and viral gene expression.


2018 ◽  
Vol 93 (4) ◽  
Author(s):  
Nagendraprabhu Ponnuraj ◽  
Yung-Tien Tien ◽  
Widaliz Vega-Rodriguez ◽  
Andrea Krieter ◽  
Keith W. Jarosinski

ABSTRACTTheHerpesviridaeconserved infected-cell protein 27 (ICP27) is essential for cell culture-based replication of most herpesviruses studied. For members of theAlphaherpesvirinae, ICP27 regulates the expression of many viral genes, including expression of pUL44 (gC), pUL47 (VP13/14), and pUL48 (VP16). These three viral proteins are dysregulated during Marek’s disease alphaherpesvirus (MDV) replication in cell culture. MDV replicates in a highly cell-associated manner in cell culture, producing little to no infectious virus. In contrast, infectious cell-free MDV is produced in specialized feather follicle epithelial (FFE) cells of infected chickens, in which these three genes are abundantly expressed. This led us to hypothesize that MDV ICP27, encoded by gene UL54, is a defining factor for the dysregulation of gC, pUL47, and pUL48 and, ultimately, ineffective virus production in cell culture. To address ICP27’s role in MDV replication, we generated recombinant MDV with ICP27 deleted (vΔ54). Interestingly, vΔ54 replicated, but plaque sizes were significantly reduced compared to those of parental viruses. The reduced cell-to-cell spread was due to ICP27 since plaque sizes were restored in rescued viruses, as well as when vΔ54 was propagated in cells expressing ICP27 intrans. In chickens, vΔ54 replicated, induced disease, and was oncogenic but was unable to transmit from chicken to chicken. To our knowledge, this is the first report showing that theHerpesviridaeconserved ICP27 protein is dispensable for replication and disease induction in its natural host.IMPORTANCEMarek’s disease (MD) is a devastating oncogenic disease that affects the poultry industry and is caused by MD alphaherpesvirus (MDV). Current vaccines block induction of disease but do not block chicken-to-chicken transmission. There is a knowledge gap in our understanding of how MDV spreads from chicken to chicken. We studied theHerpesviridaeconserved ICP27 regulatory protein in cell culture and during MDV infection in chickens. We determined that MDV ICP27 is important but not required for replication in both cell culture and chickens. In addition, MDV ICP27 was not required for disease induction or oncogenicity but was required for chicken-to-chicken transmission. This study is important because it addresses the role of ICP27 during infection in the natural host and provides important information for the development of therapies to protect chickens against MD.


2015 ◽  
Vol 89 (8) ◽  
pp. 4214-4226 ◽  
Author(s):  
Yi Zheng ◽  
Haidong Gu

ABSTRACTInfected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is a key regulator in both lytic and latent infections. In lytic infection, an important early event is the colocalization of ICP0 to nuclear domain 10 (ND10), the discrete nuclear bodies that impose restrictions on viral expression. ICP0 contains an E3 ubiquitin ligase that degrades promyelocytic leukemia protein (PML) and Sp100, two major components of ND10, and disperses ND10 to alleviate repression. We previously reported that the association between ICP0 and ND10 is a dynamic process that includes three steps: adhesion, fusion, and retention. ICP0 residues 245 to 474, defined as ND10 entry signal (ND10-ES), is a region required for the fusion step. Without ND10-ES, ICP0 adheres at the ND10 surface but fails to enter. In the present study, we focus on characterizing ND10-ES. Here we report the following. (i) Fusion of ICP0 with ND10 relies on specific sequences located within ND10-ES. Replacement of ND10-ES by the corresponding region from ORF61 of varicella-zoster virus did not rescue ND10 fusion. (ii) Three tandem ND10 fusion segments (ND10-FS1, ND10-FS2, and ND10-FS3), encompassing 200 amino acids within ND10-ES, redundantly facilitate fusion. Each of the three segments is sufficient to independently drive the fusion process, but none of the segments by themselves are necessary for ND10 fusion. Only when all three segments are deleted is fusion blocked. (iii) The SUMO interaction motif located within ND10-FS2 is not required for ND10 fusion but is required for the complete degradation of PML, suggesting that PML degradation and ND10 fusion are regulated by different molecular mechanisms.IMPORTANCEND10 nuclear bodies are part of the cell-intrinsic antiviral defenses that restrict viral gene expression upon virus infection. As a countermeasure, infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) localizes to ND10s, degrades the ND10 organizer, and disperses ND10 components in order to alleviate repression. We studied the ICP0-ND10 association to delineate elements important for this dynamic interaction and to understand its role in viral replication and host defense. In this work, we show that ICP0 contains three redundant segments to ensure an effective mergence of ICP0 with ND10 nuclear bodies. This is the first study to systematically investigate ICP0 elements that are important for ICP0-ND10 fusion.


2013 ◽  
Vol 87 (23) ◽  
pp. 13042-13047 ◽  
Author(s):  
Devis Sinani ◽  
Ethan Cordes ◽  
Aspen Workman ◽  
Prasanth Thunuguntia ◽  
Clinton Jones

Alphaherpesvirinaefamily members can reactivate from latency following stress. The synthetic corticosteroid dexamethasone induces certain cellular transcription factors in murine and bovine trigeminal ganglionic neurons. Three dexamethasone-induced transcription factors, Krüppel-like factor 15, Slug, and SPDEF, stimulated the herpes simplex virus type 1-infected cell protein 0 (ICP0) promoter more than 150-fold. Conversely, other viral promoters (VP16 and ICP4) were not strongly stimulated, suggesting that the ICP0 promoter is preferentially activated by dexamethasone-simulated stress.


Sign in / Sign up

Export Citation Format

Share Document