scholarly journals Dynein Regulators Are Important for Ecotropic Murine Leukemia Virus Infection

2016 ◽  
Vol 90 (15) ◽  
pp. 6896-6905 ◽  
Author(s):  
Roger Valle-Tenney ◽  
Tatiana Opazo ◽  
Jorge Cancino ◽  
Stephen P. Goff ◽  
Gloria Arriagada

ABSTRACTDuring the early steps of infection, retroviruses must direct the movement of the viral genome into the nucleus to complete their replication cycle. This process is mediated by cellular proteins that interact first with the reverse transcription complex and later with the preintegration complex (PIC), allowing it to reach and enter the nucleus. For simple retroviruses, such as murine leukemia virus (MLV), the identities of the cellular proteins involved in trafficking of the PIC in infection are unknown. To identify cellular proteins that interact with the MLV PIC, we developed a replication-competent MLV in which the integrase protein was tagged with a FLAG epitope. Using a combination of immunoprecipitation and mass spectrometry, we established that the microtubule motor dynein regulator DCTN2/p50/dynamitin interacts with the MLV preintegration complex early in infection, suggesting a direct interaction between the incoming viral particles and the dynein complex regulators. Further experiments showed that RNA interference (RNAi)-mediated silencing of either DCTN2/p50/dynamitin or another dynein regulator, NudEL, profoundly reduced the efficiency of infection by ecotropic, but not amphotropic, MLV reporters. We propose that the cytoplasmic dynein regulators are a critical component of the host machinery needed for infection by the retroviruses entering the cell via the ecotropic envelope pathway.IMPORTANCERetroviruses must access the chromatin of host cells to integrate the viral DNA, but before this crucial event, they must reach the nucleus. The movement through the cytoplasm—a crowded environment where diffusion is slow—is thought to utilize retrograde transport along the microtubule network by the dynein complex. Different viruses use different components of this multisubunit complex. We found that the preintegration complex of murine leukemia virus (MLV) interacts with the dynein complex and that regulators of this complex are essential for infection. Our study provides the first insight into the requirements for retrograde transport of the MLV preintegration complex.

2017 ◽  
Vol 91 (10) ◽  
Author(s):  
Tatiana Opazo ◽  
Andrea Garcés ◽  
Diego Tapia ◽  
Felipe Barraza ◽  
Angélica Bravo ◽  
...  

ABSTRACT How murine leukemia virus (MLV) travels from the cell membrane to the nucleus and the mechanism for nuclear entry of MLV DNA in dividing cells still remain unclear. It seems likely that the MLV preintegration complex (PIC) interacts with cellular proteins to perform these tasks. We recently published that the microtubule motor cytoplasmic dynein complex and its regulator proteins interact with the MLV PIC at early times of infection, suggesting a functional interaction between the incoming viral particles, the dynein complex, and dynein regulators. To better understand the role of the dynein complex in MLV infection, we performed short hairpin RNA (shRNA) screening of the dynein light chains on MLV infection. We found that silencing of a specific light chain of the cytoplasmic dynein complex, DYNLRB2, reduced the efficiency of infection by MLV reporter viruses without affecting HIV-1 infection. Furthermore, the overexpression of DYNLRB2 increased infection by MLV. We conclude that the DYNLRB2 light chain of the cytoplasmic dynein complex is an important and specific piece of the host machinery needed for MLV infection. IMPORTANCE Retroviruses must reach the chromatin of their host to integrate their viral DNA, but first they must get into the nucleus. The cytoplasm is a crowded environment in which simple diffusion is slow, and thus viruses utilize retrograde transport along the microtubule network, mediated by the dynein complex. Different viruses use different components of this multisubunit complex. We have found that murine leukemia virus (MLV) associates functionally and specifically with the dynein light chain DYNLRB2, which is required for infection. Our study provides more insight into the molecular requirements for retrograde transport of the MLV preintegration complex and demonstrates, for the first time, a role for DYNLRB2 in viral infection.


2021 ◽  
Author(s):  
Gianfranco Pietrantoni ◽  
Aracelly Gaete-Argel ◽  
Diego Herrera-Rojo ◽  
Rodrigo Ibarra-Karmy ◽  
Fernando J Bustos ◽  
...  

Murine leukemia virus (MLV) requires the infected cell to divide to access the nucleus to integrate into the host genome. It has been determined that MLV uses the microtubule and actin network to reach the nucleus at the early stages of infection. Several studies have shown that viruses use the dynein motor protein associated with microtubules for their displacement. We have previously reported that Dynein light chain roadblock-type2 (Dynlrb2) knock-down significantly decreases MLV infection compared to non-silenced cells, suggesting a functional association between this dynein light chain and MLV preintegration complex (PIC). Here we aim to determine if the dynein complex Dynlrb2 subunit plays an essential role in the retrograde transport of MLV. For this, an MLV mutant containing the green fluorescent protein (GFP) fused to the viral protein p12 was used to assay the PIC localization and speed in cells were the expression of Dynlrb2 was modulated. We found a significant decrease in the arrival of MLV PIC to the nucleus and a reduced net speed of MLV PICs when Dynlrb2 was knocked down. On the contrary, an increase in nuclear localization is observed when Dynlrb2 is overexpressed. Our results suggest that Dynlrb2 plays an essential role in MLV retrograde transport. Importance Different viruses use different components of cytoplasmic dynein complex to traffic to their replication site. We have found that murine leukemia virus (MLV) depends on dynein light chain Dynlrb2 for infection, retrograde traffic and nuclear entry. Our study provides new information regarding the molecular requirements for retrograde transport of MLV preintegration complex and demonstrates the essential role of Dynlrb2 in MLV infection.


2013 ◽  
Vol 87 (23) ◽  
pp. 12721-12736 ◽  
Author(s):  
Saumya Shree Gupta ◽  
Tobias Maetzig ◽  
Goedele N. Maertens ◽  
Azar Sharif ◽  
Michael Rothe ◽  
...  

Retroviral integrase (IN) proteins catalyze the permanent integration of proviral genomes into host DNA with the help of cellular cofactors. Lens epithelium-derived growth factor (LEDGF) is a cofactor for lentiviruses, including human immunodeficiency virus type 1 (HIV-1), and targets lentiviral integration toward active transcription units in the host genome. In contrast to lentiviruses, murine leukemia virus (MLV), a gammaretrovirus, tends to integrate near transcription start sites. Here, we show that the bromodomain and extraterminal domain (BET) proteins BRD2, BRD3, and BRD4 interact with gammaretroviral INs and stimulate the catalytic activity of MLV INin vitro. We mapped the interaction site to a characteristic structural feature within the BET protein extraterminal (ET) domain and to three amino acids in MLV IN. The ET domains of different BET proteins stimulate MLV integrationin vitroand, in the case of BRD2, alsoin vivo. Furthermore, two small-molecule BET inhibitors, JQ1 and I-BET, decrease MLV integration and shift it away from transcription start sites. Our data suggest that BET proteins might act as chromatin-bound acceptors for the MLV preintegration complex. These results could pave a way to redirecting MLV DNA integration as a basis for creating safer retroviral vectors.


1999 ◽  
Vol 73 (6) ◽  
pp. 5034-5042 ◽  
Author(s):  
Tatiana Zavorotinskaya ◽  
Lorraine M. Albritton

ABSTRACT Entry of ecotropic murine leukemia virus initiates when the envelope surface protein recognizes and binds to the virus receptor on host cells. The envelope transmembrane protein then mediates fusion of viral and host cell membranes and penetration into the cytoplasm. Using a genetic selection, we isolated an infectious retrovirus variant containing three changes in the surface protein—histidine 8 to arginine, glutamine 227 to arginine, and aspartate 243 to tyrosine. Single replacement of histidine 8 with arginine (H8R) resulted in almost complete loss of infectivity, even though the mutant envelope proteins were stable and efficiently incorporated into virions. Virions carrying H8R envelope were proficient at binding cells expressing receptor but failed to induce cell-cell fusion of XC cells, indicating that the histidine at position 8 plays an essential role in fusion during penetration of the host cell membrane. Thus, there is at least one domain in SU that is involved in fusion; the fusion functions do not reside exclusively in TM. In contrast, envelope with all three changes induced cell-cell fusion of XC cells and produced virions that were 10,000-fold more infectious than those containing only the H8R substitution, indicating that changes at positions 227 and 243 can suppress a fusion defect caused by loss of histidine 8 function. Moreover, the other two changes acted synergistically, indicating that both compensate for the loss of the same essential function of histidine 8. The ability of these changes to suppress this fusion defect might provide a means for overcoming postbinding defects found in targeted retroviral vectors for use in human gene therapy.


1981 ◽  
Vol 1 (5) ◽  
pp. 394-407 ◽  
Author(s):  
J A Cooper ◽  
T Hunter

Chicken embryo cells transformed by the related avian sarcoma viruses PRC II and Fujinami sarcoma virus, or by the unrelated virus Y73, contain three phosphoproteins not observed in untransformed cells and increased levels of up to four other phosphoproteins. These same phosphoproteins are present in increased levels in cells transformed by Rous sarcoma virus, a virus which is apparently unrelated to the three aforementioned viruses. In all cases, the phosphoproteins contain phosphotyrosine and thus may be substrates for the tyrosine-specific protein kinases encoded by these viruses. In one case, the site(s) of tyrosine phosphorylation within the protein is the same for all four viruses. A homologous protein is also phosphorylated, at the same major site, in mouse 3T3 cells transformed by Rous sarcoma virus or by the further unrelated virus Abelson murine leukemia virus. A second phosphotyrosine-containing protein has been detected in both Rous sarcoma virus and Abelson murine leukemia virus-transformed 3T3 cells, but was absent from normal 3T3 cells and 3T3 cells transformed by various other viruses. We conclude that representatives of four apparently unrelated classes of transforming retroviruses all induce the phosphorylation of tyrosines present in the same set of cellular proteins.


2004 ◽  
Vol 78 (12) ◽  
pp. 6190-6199 ◽  
Author(s):  
Fatima Serhan ◽  
Magalie Penaud ◽  
Caroline Petit ◽  
Thierry Leste-Lasserre ◽  
Stéphane Trajcevski ◽  
...  

ABSTRACT We showed that a U5-U3 junction was reproducibly detected by a PCR assay as early as 1 to 2 h postinfection with a DNase-treated murine leukemia virus (MLV)-containing supernatant in aphidicolin-arrested NIH 3T3 cells, as well as in nonarrested cells. Such detection is azidothymidine sensitive and corresponded to neosynthesized products of the reverse transcriptase. This observation was confirmed in two additional human cell lines, TE671 and ARPE-19. Using cell fractionation combined with careful controls, we found that a two-long-terminal-repeat (two-LTR) junction molecule was detectable in the cytoplasm as early as 2 h post virus entry. Altogether, our data indicated that the neosynthesized retroviral DNA led to the early formation of structures including true two-LTR junctions in the cytoplasm of MLV-infected cells. Thus, the classical assumption that two-LTR circles are a mitosis-dependent dead-end product accumulating in the nucleus must be reconsidered. MLV-derived products containing a two-LTR junction can no longer be used as an exclusive surrogate for the preintegration complex nuclear translocation event.


1981 ◽  
Vol 1 (5) ◽  
pp. 394-407
Author(s):  
J A Cooper ◽  
T Hunter

Chicken embryo cells transformed by the related avian sarcoma viruses PRC II and Fujinami sarcoma virus, or by the unrelated virus Y73, contain three phosphoproteins not observed in untransformed cells and increased levels of up to four other phosphoproteins. These same phosphoproteins are present in increased levels in cells transformed by Rous sarcoma virus, a virus which is apparently unrelated to the three aforementioned viruses. In all cases, the phosphoproteins contain phosphotyrosine and thus may be substrates for the tyrosine-specific protein kinases encoded by these viruses. In one case, the site(s) of tyrosine phosphorylation within the protein is the same for all four viruses. A homologous protein is also phosphorylated, at the same major site, in mouse 3T3 cells transformed by Rous sarcoma virus or by the further unrelated virus Abelson murine leukemia virus. A second phosphotyrosine-containing protein has been detected in both Rous sarcoma virus and Abelson murine leukemia virus-transformed 3T3 cells, but was absent from normal 3T3 cells and 3T3 cells transformed by various other viruses. We conclude that representatives of four apparently unrelated classes of transforming retroviruses all induce the phosphorylation of tyrosines present in the same set of cellular proteins.


2002 ◽  
Vol 76 (13) ◽  
pp. 6609-6617 ◽  
Author(s):  
Fatima Serhan ◽  
Nathalie Jourdan ◽  
Sylvie Saleun ◽  
Philippe Moullier ◽  
Ghislaine Duisit

ABSTRACT We previously reported that the human bronchocarcinoma cell line A549 produces poorly infectious gibbon ape leukemia virus-pseudotyped Moloney murine leukemia virus (MLV). In contrast, similar amounts of virions recovered from human fibrosarcoma HT1080 cells result in 10-fold-higher transduction rates (G. Duisit, A. Salvetti, P. Moullier, and F. Cosset, Hum. Gene Ther. 10:189-200, 1999). We have now extended this initial observation to other type-C envelope (Env) pseudotypes and analyzed the mechanism involved. Structural and morphological analysis showed that viral particles recovered from A549 (A549-MLV) and HT1080 (HT1080-MLV) cells were normal and indistinguishable from each other. They expressed equivalent levels of mature Env proteins and bound similarly to the target cells. Furthermore, incoming particles reached the cytosol and directed the synthesis of linear viral DNA equally efficiently. However, almost no detectable circular DNAs could be detected in A549-MLV-infected cells, indicating that the block of infection resulted from defective nuclear translocation of the preintegration complex. Interestingly, pseudotyping of A549-MLV with vesicular stomatitis virus glycoprotein G restored the amount of circular DNA forms as well as the transduction rates to HT1080-MLV levels, suggesting that the postentry blockage could be overcome by endocytic delivery of the core particles downstream of the restriction point. Thus, in contrast to the previously described target cell-dependent Fv-1 (or Fv1-like) restriction in mammalian cells (P. Pryciak and H. E. Varmus, J. Virol. 66:5959-5966, 1992; G. Towers, M. Bock, S. Martin, Y. Takeuchi, J. P. Stoye, and O. Danos, Proc. Natl. Acad. Sci. USA 97:12295-12299, 2000), we report here a new restriction of MLV replication that relies only on the producer cell type.


2003 ◽  
Vol 77 (20) ◽  
pp. 10841-10849 ◽  
Author(s):  
Chi-Wei Lu ◽  
Monica J. Roth

ABSTRACT Entry of retroviruses into host cells requires the fusion between the viral and cellular membranes. It is unclear how receptor binding induces conformational changes within the surface envelope protein (SU) that activate the fusion machinery residing in the transmembrane envelope protein (TM). In this report, we have isolated a point mutation, Q252R, within the proline-rich region of the 4070A murine leukemia virus SU that altered the virus-cell binding characteristics and induced cell-cell fusion. Q252R displays a SU shedding-sensitive phenotype. Cell-cell fusion is receptor dependent and is observed only in the presence of MuLV Gag-Pol. Both cellular binding and fusion by Q252R are greatly enhanced in conjunction of G100R, a mutation within the SU variable region A which increases viral binding through an independent mechanism. Deletion of a conserved histidine (His36) at the SU N terminus abolished cell-cell fusion by G100R/Q252R Env without compromising virus-cell binding. Although G100R/Q252R virus has no detectable titer, replacement of the N-terminal nine 4070A SU amino acids with the equivalent ecotropic MuLV sequence restored viral infectivity. These studies provide insights into the functional cooperation between multiple elements of SU required to signal receptor binding and activate the fusion machinery.


Sign in / Sign up

Export Citation Format

Share Document