retroviral vectors
Recently Published Documents


TOTAL DOCUMENTS

1110
(FIVE YEARS 30)

H-INDEX

88
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Jing Zhang ◽  
Jingjing Zhu ◽  
Genhui Zheng ◽  
Qianyu Wang ◽  
Xiaorui Li ◽  
...  

Chimeric antigen receptor (CAR) T cells targeting CD19 antigen have produced remarkable clinical outcomes for cancer patients. However, identifying measures to enhance effector function remains one of the most challenging issues in CD19-targeted immunotherapy. Here, we report a novel approach in which a microRNA (miRNA) or short-hairpin RNA (shRNA) cassette was integrated into CAR-expressing retroviral vectors. Using this system, we generated anti-CD19 CAR-T cells co-expressing miR155 or LSD1 shRNA and found that anti-CD19 CAR-T cells with miR155 upregulation or LSD1 downregulation exhibited increased anti-tumor functions in vitro and in vivo. Transcriptional profiling analysis by RNA sequencing revealed the targets of miR155 and LSD1 in anti-CD19 CAR-T cells. Our experiments indicated that introduction of miRNA or shRNA expression into anti-CD19 CAR T-cells might be an effective strategy to improve the anti-tumor effects of CAR-T cell therapy.


2021 ◽  
Author(s):  
Brian R. Shy ◽  
Vivasvan Vykunta ◽  
Alvin Ha ◽  
Theodore L. Roth ◽  
Alexis Talbot ◽  
...  

AbstractCRISPR-Cas9 offers unprecedented opportunities to modify genome sequences in primary human cells to study disease variants and reprogram cell functions for next-generation cellular therapies. CRISPR has several potential advantages over widely used retroviral vectors including: 1) site-specific transgene insertion via homology directed repair (HDR), and 2) reductions in the cost and complexity of genome modification. Despite rapid progress with ex vivo CRISPR genome engineering, many novel research and clinical applications would be enabled by methods to further improve knock-in efficiency and the absolute yield of live knock-in cells, especially with large HDR templates (HDRT). We recently reported that Cas9 target sequences (CTS) could be introduced into double-stranded DNA (dsDNA) HDRTs to improve knock-in, but yields and efficiencies were limited by toxicity at high HDRT concentrations. Here we developed a novel system that takes advantage of lower toxicity with single-stranded DNA (ssDNA). We designed hybrid ssDNA HDRTs that incorporate CTS sites and were able to boost knock-in percentages by >5-fold and live cell yields by >7-fold relative to dsDNA HDRTs with CTS. Knock-in efficiency and yield with ssCTS HDRTs were increased further with small molecule inhibitor combinations to improve HDR. We demonstrate application of these methods across a variety of target loci, knock-in constructs, and primary human cell types to reach ultra-high HDR efficiencies (>80-90%) which we use for pathogenic gene variant modeling and universal gene replacement strategies for IL2RA and CTLA4 mutations associated with mendelian immune disorders. Finally, we develop a GMP-compatible method for fully non-viral CAR-T cell manufacturing, demonstrating knock-in efficiencies of 46-62% and generating yields of >1.5 x 109 CAR+ T cells, well above current doses for adoptive cellular therapies. Taken together, we present a comprehensive non-viral approach to model disease associated mutations and re-write targeted genome sequences to program immune cell therapies at a scale compatible with future clinical application.


Intervirology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Jie Wei ◽  
Yan Sun ◽  
Ting-ting Wang ◽  
Gui Zhu ◽  
Wan-hong Liu ◽  
...  

<b><i>Background:</i></b> For foamy virus, the transactivator of spumaretrovirus (Tas) could bind directly to target DNA sequences termed as Tas responsive elements and trigger the viral internal promoter (IP) and long terminal repeat (LTR) promoters. The cellular endogenous factors also play an important role in viral gene expressions. We hypothesized that except the viral transcription factor Tas, the cellular endogenous factors also affect the viral gene expression. <b><i>Methods:</i></b> The full length of the prototype foamy virus (PFV) genome (U21247) was used to predict the potential binding sites of the transcription factors by online software JASPAR (http://jaspar.genereg.net) and Softberry (http://linux1.softberry.com/berry.phtml?topic=index&amp;group=programs&amp;subgroup=promoter). The Dual-Luciferase<sup>®</sup> Reporter Assay System (Promega, USA) was used to confirm the relative luciferase activities of the test groups. The different representative activating agents or inhibitors of each canonical signal pathway were used to identify the impact of these pathways on PFV 5′LTR and IP promoters. <b><i>Results:</i></b> The results showed different cellular endogenous factors might have respective effects on PFV 5′LTR and IP. It is worth mentioning that activator protein-1 and BCL2-associated athanogene 3, 2 kinds of vital proteins associated with NF-κB and PKC pathways, could activate the basal activity of 5′LTR and IP promoters but inhibit the Tas-regulated activity of both promoters. Furthermore, PFV Tas was identified to trigger the transcription of the NF-κB promoter. <b><i>Conclusion:</i></b> NF-κB had a negative effect on PFV 5′LTR and IP promoter activities, the PKC pathway might upregulate 5′LTR and IP promoter activities, and the JNK and NF-AT signal pathway could increase the Tas-regulated promoter activity of PFV 5′LTR. This study sheds light on the interaction between PFV and the host cell and may help utilize the viral promoters in retroviral vectors designed for gene transfer experiments.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1528
Author(s):  
Roman P. Labbé ◽  
Sandrine Vessillier ◽  
Qasim A. Rafiq

Lentiviral vectors have played a critical role in the emergence of gene-modified cell therapies, specifically T cell therapies. Tisagenlecleucel (Kymriah), axicabtagene ciloleucel (Yescarta) and most recently brexucabtagene autoleucel (Tecartus) are examples of T cell therapies which are now commercially available for distribution after successfully obtaining EMA and FDA approval for the treatment of blood cancers. All three therapies rely on retroviral vectors to transduce the therapeutic chimeric antigen receptor (CAR) into T lymphocytes. Although these innovations represent promising new therapeutic avenues, major obstacles remain in making them readily available tools for medical care. This article reviews the biological principles as well as the bioprocessing of lentiviral (LV) vectors and adoptive T cell therapy. Clinical and engineering successes, shortcomings and future opportunities are also discussed. The development of Good Manufacturing Practice (GMP)-compliant instruments, technologies and protocols will play an essential role in the development of LV-engineered T cell therapies.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1471
Author(s):  
Manuela Mirow ◽  
Lea Isabell Schwarze ◽  
Boris Fehse ◽  
Kristoffer Riecken

The Gibbon Ape Leukemia Virus envelope protein (GALV-Env) mediates efficient transduction of human cells, particularly primary B and T lymphocytes, and is therefore of great interest in gene therapy. Using internal domains from murine leukemia viruses (MLV), chimeric GALV-Env proteins such as GALV-C4070A were derived, which allow pseudotyping of lentiviral vectors. In order to improve expression efficiency and vector titers, we developed a codon-optimized (co) variant of GALV-C4070A (coGALV-Env). We found that coGALV-Env mediated efficient pseudotyping not only of γ-retroviral and lentiviral vectors, but also α-retroviral vectors. The obtained titers on HEK293T cells were equal to those with the classical GALV-Env, whereas the required plasmid amounts for transient vector production were significantly lower, namely, 20 ng coGALV-Env plasmid per 106 293T producer cells. Importantly, coGALV-Env-pseudotyped γ- and α-retroviral, as well as lentiviral vectors, mediated efficient transduction of primary human T cells. We propose that the novel chimeric coGALV-Env gene will be very useful for the efficient production of high-titer vector preparations, e.g., to equip human T cells with novel specificities using transgenic TCRs or CARs. The considerably lower amount of plasmid needed might also result in a significant cost advantage for good manufacturing practice (GMP) vector production based on transient transfection.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
A Asghar ◽  
Z Asjad ◽  
H Tahir ◽  
Z Maheen ◽  
S Hanif

The blood disorder, Hemophilia, has its roots embedded deep into the history of genetic disorders. The European royal family is one of the most prominent families to be affected by this disease thus, dubbing it 'the royal disease'. The types of Hemophilia are divided into two based on the type of coagulation factor mutation found in the patient. For treating haemophilia, gene therapy is done by using different vectors such as lentiviral and retroviral vectors but due to the production of limited expression different adeno associated virus (AAV) strains are used. Some engineerly modified vectors are currently used to get the best possible results. The clinical trials prove the efficacy of these vectors so through their obtained statistical consideration, patient experience and population study once can design vaccines and drugs for haemophilia patients but also due to pre-existing Nabs and pre-existing HCV or HBV infection, the general application of AAV gene therapy is currently limited. The possibility of gene editing for the repair of the mutation is on the horizon.


Epigenomics ◽  
2021 ◽  
Author(s):  
Amirhosein Maali ◽  
Faezeh Maroufi ◽  
Farzin Sadeghi ◽  
Amir Atashi ◽  
Reza Kouchaki ◽  
...  

Induced pluripotent stem cell (iPSC) technology, based on autologous cells’ reprogramming to the embryonic state, is a new approach in regenerative medicine. Current advances in iPSC technology have opened up new avenues for multiple applications, from basic research to clinical therapy. Thus, conducting iPSC trials have attracted increasing attention and requires an extensive understanding of the molecular basis of iPSCs. Since iPSC reprogramming is based on the methods inducing the expression of specific genes involved in pluripotency states, it can be concluded that iPSC reprogramming is strongly influenced by epigenetics. In this study, we reviewed the molecular basis of reprogramming, including the reprogramming factors (OCT4, SOX2, KLF4, c-MYC, NANOG, ESRRB, LIN28 as well as their regulatory networks), applied vectors (retroviral vectors, adenoviral vectors, Sendaiviral vectors, episomal plasmids, piggyBac, simple vectors, etc.) and epigenetic modifications (miRNAs, histones and DNA methylation states) to provide a comprehensive guide for reprogramming studies.


Gene Therapy ◽  
2021 ◽  
Author(s):  
Michael A. Morgan ◽  
Melanie Galla ◽  
Manuel Grez ◽  
Boris Fehse ◽  
Axel Schambach

AbstractGene therapy can be used to restore cell function in monogenic disorders or to endow cells with new capabilities, such as improved killing of cancer cells, expression of suicide genes for controlled elimination of cell populations, or protection against chemotherapy or viral infection. While gene therapies were originally most often used to treat monogenic diseases and to improve hematopoietic stem cell transplantation outcome, the advent of genetically modified immune cell therapies, such as chimeric antigen receptor modified T cells, has contributed to the increased numbers of patients treated with gene and cell therapies. The advancement of gene therapy with integrating retroviral vectors continues to depend upon world-wide efforts. As the topic of this special issue is “Spotlight on Germany,” the goal of this review is to provide an overview of contributions to this field made by German clinical and research institutions. Research groups in Germany made, and continue to make, important contributions to the development of gene therapy, including design of vectors and transduction protocols for improved cell modification, methods to assess gene therapy vector efficacy and safety (e.g., clonal imbalance, insertion sites), as well as in the design and conduction of clinical gene therapy trials.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lisa A. Kohn ◽  
Donald B. Kohn

Gene therapy is an innovative treatment for Primary Immune Deficiencies (PIDs) that uses autologous hematopoietic stem cell transplantation to deliver stem cells with added or edited versions of the missing or malfunctioning gene that causes the PID. Initial studies of gene therapy for PIDs in the 1990–2000's used integrating murine gamma-retroviral vectors. While these studies showed clinical efficacy in many cases, especially with the administration of marrow cytoreductive conditioning before cell re-infusion, these vectors caused genotoxicity and development of leukoproliferative disorders in several patients. More recent studies used lentiviral vectors in which the enhancer elements of the long terminal repeats self-inactivate during reverse transcription (“SIN” vectors). These SIN vectors have excellent safety profiles and have not been reported to cause any clinically significant genotoxicity. Gene therapy has successfully treated several PIDs including Adenosine Deaminase Severe Combined Immunodeficiency (SCID), X-linked SCID, Artemis SCID, Wiskott-Aldrich Syndrome, X-linked Chronic Granulomatous Disease and Leukocyte Adhesion Deficiency-I. In all, gene therapy for PIDs has progressed over the recent decades to be equal or better than allogeneic HSCT in terms of efficacy and safety. Further improvements in methods should lead to more consistent and reliable efficacy from gene therapy for a growing list of PIDs.


2021 ◽  
Author(s):  
Lieve EH van der Donk ◽  
Jet van der Spek ◽  
Tom van Duivenvoorde ◽  
Marieke S ten Brink ◽  
Teunis BH Geijtenbeek ◽  
...  

Genetic manipulation of primary lymphocytes is crucial for both clinical purposes and fundamental research. Despite their broad use, we encountered a paucity of data on systematic comparison and optimization of retroviral vectors, the workhorses of genetic modification of primary lymphocytes. Here, we report the construction and validation of a versatile range of retroviral expression vectors. These vectors can be used for the knockdown or overexpression of genes of interest in primary human and murine lymphocytes, in combination with a wide choice of selection and reporter strategies. By streamlining the vector backbone and insert design, these publicly available vectors allow easy interchangeability of the independent building blocks, such as different promoters, fluorescent proteins, surface markers and antibiotic resistance cassettes. We validated these vectors and tested the optimal promoters for in vitro and in vivo overexpression and knockdown of the murine T cell antigen receptor. By publicly sharing these vectors and the data on their optimization, we aim to facilitate genetic modification of primary lymphocytes for researchers entering this field.


Sign in / Sign up

Export Citation Format

Share Document