bet inhibitors
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 145)

H-INDEX

22
(FIVE YEARS 8)

2021 ◽  
Vol 2 (6) ◽  
pp. 586-601
Author(s):  
Chiara Tarantelli ◽  
Eleonora Cannas ◽  
Hillarie Ekeh ◽  
Carmelo Moscatello ◽  
Eugenio Gaudio ◽  
...  

Aim: Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that play a fundamental role in transcription regulation. Preclinical and early clinical evidence sustain BET targeting as an anti-cancer approach. BET degraders are chimeric compounds comprising of a BET inhibitor, which allows the binding to BET bromodomains, linked to a small molecule, binder for an E3 ubiquitin ligase complex, triggering BET proteins degradation via the proteasome. These degraders, called proteolysis-targeting chimeras (PROTACs), can exhibit greater target specificity compared to BET inhibitors and overcome some of their limitations, such as the upregulation of the BET proteins themselves. Here are presented data on the anti-tumor activity and the mechanism of action of the BET degrader MZ1 in diffuse large B cell lymphoma (DLBCL) of the activated B-cell like (ABC, ABC DLBCL), using a BET inhibitor as a comparison. Methods: Established lymphoma cell lines were exposed for 72 h to increasing doses of the compounds. Cell proliferation was evaluated by using an 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide (MTT) assay. Fluorescent-Activated Cell Sorter (FACS) analysis was performed to measure apoptotic activation and RNA sequencing (RNA-Seq) to study the transcriptional changes induced by the compounds. Results: MZ1, and not its negative control epimer cisMZ1, was very active with a median half maximal inhibitory concentration (IC50) of 49 nmol/L. MZ1 was more in vitro active than the BET inhibitor birabresib (OTX015). Importantly, MZ1 induced cell death in all the ABC DLBCL cell lines, while the BET inhibitor was cytotoxic only in a fraction of them. BET degrader and inhibitor shared partially similar changes at transcriptome level but the MZ1 effect was stronger and overlapped with that caused cyclin-dependent kinase 9 (CDK9) inhibition. Conclusions: The BET degrader MZ1 had strong cytotoxic activity in all the ABC DLBCL cell lines that were tested, and, at least in vitro, it elicited more profound effects than BET inhibitors, and encourages further investigations.


2021 ◽  
Author(s):  
Atefeh Sharif Hoseini ◽  
Masoud Heshmati ◽  
Amin Soltani ◽  
Hedayatollah Shirzad ◽  
Morteza Sedehi ◽  
...  

Abstract Bromodomain and extra-terminal (BET) proteins are recognized acetylated lysine of histone 4 and act as scaffolds to recruit many other proteins to promoters and at enhancers of active genes, especially at the super-enhancers of key genes, driving the transcription process and have been identified as potential therapeutic targets in breast cancer. However, the efficacy of BET inhibitors such as JQ1 in breast cancer therapy is impeded by IL-6 through an as yet defined mechanism. We investigated the interplay between IL-6 and JQ1 in MCF-7 and MDA-MB-231 human breast cancer cells. Here we demonstrate that the efficacy of JQ1 on the inhibition of cell growth and apoptosis was stronger in MDA-MB-231 cells than in MCF-7 cells. Further, MCF-7 cells, but not MDA-MB-231 cells, exhibited increased expression of CXCR4 following IL-6 treatment. JQ1 significantly reduced CXCR4 surface expression in both cell lines and diminished the effects of IL-6 pre-treatment on MCF-7 cells. While IL-6 suppressed the extension of breast cancer stem cells (BCSCs) in MCF-7 cells, JQ1 impeded its inhibitory effect. In addition, in MCF-7 cells JQ1 increased the number of senescent cells in a time-dependent manner. Analysis of gene expression indicated that JQ1 and IL-6 synergistically increase SNAIL expression and decrease c-MYC expression in MCF-7 cells. So, the BET proteins are promising, novel therapeutic targets in late-stage breast cancers.


Author(s):  
Lucia Tejedor-Santamaria ◽  
Jose Luis Morgado-Pascual ◽  
Laura Marquez-Exposito ◽  
Beatriz Suarez-Alvarez ◽  
Raul R. Rodrigues-Diez ◽  
...  

Crescentic glomerulonephritis is a devastating autoimmune disease that without early and properly treat-ment may rapidly progress to end-stage renal disease and death. Current immunosuppressive treatment provided limited efficacy and an important burden of adverse events. Epigenetic drugs are a source of novel therapeutic tools. Among them, bromodomain and extraterminal domain (BET) inhibitors (iBETs) block the interaction between bromodomains and acetylated proteins, including histones and transcription factors. iBETs have demonstrated protective effects on malignancy, inflammatory conditions and experi-mental kidney disease. Recently, Gremlin-1 was proposed as a urinary biomarker of disease progression in human anti-neutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis. We have now evaluated whether iBETs regulate Gremlin-1 in experimental anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS) in mice, a model of human crescentic glomerulonephritis. In NTS-injected mice, the iBET JQ1 inhibited renal Gremlin-1 overexpression and diminished glomerular damage, including podocyte loss. Chromatin immunoprecipitation assay demonstrated BRD4 enrichment of the Grem-1 gene promoter in injured kidneys, consistent with Gremlin-1 epigenetic regulation. Moreover, JQ1 blocked BRD4 binding and inhibited Grem-1 gene transcription. The beneficial effect of iBETs was also mediated by targeting NOTCH signaling pathway. JQ1 inhibited the gene expression of the NOTCH effec-tors Hes-1 and Hey-1 in NTS-injured kidneys. Our results further support the role for epigenetic drugs, such as iBETs, in the treatment of rapidly progressive crescentic glomerulonephritis.


Author(s):  
Lucia Tejedor-Santamaria ◽  
Jose Luis Morgado-Pascual ◽  
Laura Marquez-Exposito ◽  
Beatriz Suarez-Alvarez ◽  
Raul R. Rodrigues-Diez ◽  
...  

Crescentic glomerulonephritis is a devastating autoimmune disease that without early and properly treat-ment may rapidly progress to end-stage renal disease and death. Current immunosuppressive treatment provided limited efficacy and an important burden of adverse events. Epigenetic drugs are a source of novel therapeutic tools. Among them, bromodomain and extraterminal domain (BET) inhibitors (iBETs) block the interaction between bromodomains and acetylated proteins, including histones and transcription factors. iBETs have demonstrated protective effects on malignancy, inflammatory conditions and experi-mental kidney disease. Recently, Gremlin-1 was proposed as a urinary biomarker of disease progression in human anti-neutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis. We have now evaluated whether iBETs regulate Gremlin-1 in experimental anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS) in mice, a model of human crescentic glomerulonephritis. In NTS-injected mice, the iBET JQ1 inhibited renal Gremlin-1 overexpression and diminished glomerular damage, including podocyte loss. Chromatin immunoprecipitation assay demonstrated BRD4 enrichment of the Grem-1 gene promoter in injured kidneys, consistent with Gremlin-1 epigenetic regulation. Moreover, JQ1 blocked BRD4 binding and inhibited Grem-1 gene transcription. The beneficial effect of iBETs was also mediated by targeting NOTCH signaling pathway. JQ1 inhibited the gene expression of the NOTCH effec-tors Hes-1 and Hey-1 in NTS-injured kidneys. Our results further support the role for epigenetic drugs, such as iBETs, in the treatment of rapidly progressive crescentic glomerulonephritis.


Author(s):  
Lucia Tejedor-Santamaria ◽  
Jose Luis Morgado-Pascual ◽  
Laura Marquez-Exposito ◽  
Beatriz Suarez-Alvarez ◽  
Raul R. Rodrigues-Diez ◽  
...  

Crescentic glomerulonephritis is a devastating autoimmune disease that without early and properly treat-ment may rapidly progress to end-stage renal disease and death. Current immunosuppressive treatment provided limited efficacy and an important burden of adverse events. Epigenetic drugs are a source of novel therapeutic tools. Among them, bromodomain and extraterminal domain (BET) inhibitors (iBETs) block the interaction between bromodomains and acetylated proteins, including histones and transcription factors. iBETs have demonstrated protective effects on malignancy, inflammatory conditions and experi-mental kidney disease. Recently, Gremlin-1 was proposed as a urinary biomarker of disease progression in human anti-neutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis. We have now evaluated whether iBETs regulate Gremlin-1 in experimental anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS) in mice, a model of human crescentic glomerulonephritis. In NTS-injected mice, the iBET JQ1 inhibited renal Gremlin-1 overexpression and diminished glomerular damage, including podocyte loss. Chromatin immunoprecipitation assay demonstrated BRD4 enrichment of the Grem-1 gene promoter in injured kidneys, consistent with Gremlin-1 epigenetic regulation. Moreover, JQ1 blocked BRD4 binding and inhibited Grem-1 gene transcription. The beneficial effect of iBETs was also mediated by targeting NOTCH signaling pathway. JQ1 inhibited the gene expression of the NOTCH effec-tors Hes-1 and Hey-1 in NTS-injured kidneys. Our results further support the role for epigenetic drugs, such as iBETs, in the treatment of rapidly progressive crescentic glomerulonephritis.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1878
Author(s):  
Janina Schreiber ◽  
Nastassia Liaukouskaya ◽  
Lars Fuhrmann ◽  
Alexander-Thomas Hauser ◽  
Manfred Jung ◽  
...  

In utero renal development is subject to maternal metabolic and environmental influences affecting long-term renal function and the risk of developing chronic kidney failure and cardiovascular disease. Epigenetic processes have been implicated in the orchestration of renal development and prenatal programming of nephron number. However, the role of many epigenetic modifiers for kidney development is still unclear. Bromodomain and extra-terminal domain (BET) proteins act as histone acetylation reader molecules and promote gene transcription. BET family members Brd2, Brd3 and Brd4 are expressed in the nephrogenic zone during kidney development. Here, the effect of the BET inhibitor JQ1 on renal development is evaluated. Inhibition of BET proteins via JQ1 leads to reduced growth of metanephric kidney cultures, loss of the nephron progenitor cell population, and premature and disturbed nephron differentiation. Gene expression of key nephron progenitor transcription factor Osr1 is downregulated after 24 h BET inhibition, while Lhx1 and Pax8 expression is increased. Mining of BRD4 ChIP-seq and gene expression data identify Osr1 as a key factor regulated by BRD4-controlled gene activation. Inhibition of BRD4 by BET inhibitor JQ1 leads to downregulation of Osr1, thereby causing a disturbance in the balance of nephron progenitor cell self-renewal and premature differentiation of the nephron, which ultimately leads to kidney hypoplasia and disturbed nephron development. This raises questions about the potential teratogenic effects of BET inhibitors for embryonic development. In summary, our work highlights the role of BET proteins for prenatal programming of nephrogenesis and identifies Osr1 as a potential target of BET proteins.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna M. Jermakowicz ◽  
Matthew J. Rybin ◽  
Robert K. Suter ◽  
Jann N. Sarkaria ◽  
Zane Zeier ◽  
...  

AbstractBromodomain and extraterminal domain (BET) proteins have emerged as therapeutic targets in multiple cancers, including the most common primary adult brain tumor glioblastoma (GBM). Although several BET inhibitors have entered clinical trials, few are brain penetrant. We have generated UM-002, a novel brain penetrant BET inhibitor that reduces GBM cell proliferation in vitro and in a human cerebral brain organoid model. Since UM-002 is more potent than other BET inhibitors, it could potentially be developed for GBM treatment. Furthermore, UM-002 treatment reduces the expression of cell-cycle related genes in vivo and reduces the expression of invasion related genes within the non-proliferative cells present in tumors as measured by single cell RNA-sequencing. These studies suggest that BET inhibition alters the transcriptional landscape of GBM tumors, which has implications for designing combination therapies. Importantly, they also provide an integrated dataset that combines in vitro and ex vivo studies with in vivo single-cell RNA-sequencing to characterize a novel BET inhibitor in GBM.


Immunotherapy ◽  
2021 ◽  
Author(s):  
Vincenzo Di Nunno ◽  
Enrico Franceschi ◽  
Lidia Gatto ◽  
Alba Ariela Brandes

Sign in / Sign up

Export Citation Format

Share Document