scholarly journals Trafficking through the Rev/RRE Pathway Is Essential for Efficient Inhibition of Human Immunodeficiency Virus Type 1 by an Antisense RNA Derived from the Envelope Gene

2008 ◽  
Vol 83 (2) ◽  
pp. 940-952 ◽  
Author(s):  
Alex M. Ward ◽  
David Rekosh ◽  
Marie-Louise Hammarskjold

ABSTRACT A human immunodeficiency virus type 1 (HIV-1)-based vector expressing an antisense RNA directed against HIV-1 is currently in clinical trials. This vector has shown a remarkable ability to inhibit HIV-1 replication, in spite of the fact that therapeutic use of unmodified antisense RNAs has generally been disappointing. To further analyze the basis for this, we examined the effects of different plasmid-based HIV-1 long-terminal-repeat-driven constructs expressing antisense RNA to the same target region in HIV-1 but containing different export elements. Two of these vectors were designed to express antisense RNA containing either a Rev response element (RRE) or a Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE). In the third vector, no specific transport element was provided. Efficient inhibition of HIV-1 virus production was obtained with the RRE-driven antisense RNA. This construct also efficiently inhibited p24 production from a pNL4-3 provirus that used the MPMV CTE for RNA export. In contrast, little inhibition was observed with the constructs lacking an RRE. Furthermore, when the RRE-driven antisense RNA was redirected to the Tap/Nxf1 pathway, utilized by the MPMV CTE, through the expression of a RevM10-Tap fusion protein, the efficiency of antisense inhibition was greatly reduced. These results indicate that efficient inhibition requires trafficking of the antisense RNA through the Rev/RRE pathway. Mechanistic studies indicated that the Rev/RRE-mediated inhibition did not involve either nuclear retention or degradation of target mRNA, since target RNA was found to export and associate normally with polyribosomes. However, protein levels were significantly reduced. Taken together, our results suggest a new mechanism for antisense inhibition of HIV mediated by Rev/RRE.

2004 ◽  
Vol 85 (6) ◽  
pp. 1479-1484
Author(s):  
Mary Poss ◽  
David C. Holley ◽  
Roman Biek ◽  
Harold Cox ◽  
John Gerdes

The virus population transmitted by a human immunodeficiency virus type 1 (HIV-1) infected individual undergoes restriction and subsequent diversification in the new host. However, in contrast to men, who have limited virus diversity at seroconversion, there is measurable diversity in viral envelope gene sequences in women infected with clade A HIV-1. In this study, virus sequence diversity in three unrelated, clade A infected women preceding and shortly after seroconversion was evaluated. It was demonstrated that there is measurable evolution of envelope gene sequences over this time interval. Furthermore, in each of the three individuals, amino acid substitutions arose at five or six positions in sequences derived at or shortly after seroconversion relative to sequences obtained from the seronegative sample. Presented here is a model of clade A gp120 to determine the location of substitutions that appeared as the virus population became established in three clade A HIV-1 infected women.


2004 ◽  
Vol 78 (2) ◽  
pp. 1020-1025 ◽  
Author(s):  
Bruno Garulli ◽  
Yoshihiro Kawaoka ◽  
Maria R. Castrucci

ABSTRACT The humoral and cellular immune responses in the genital mucosa likely play an important role in the prevention of sexually transmitted infections, including infection with human immunodeficiency virus type 1 (HIV-1). Here we show that vaginal infection of progesterone-treated BALB/c mice with a recombinant influenza virus bearing the immunodominant P18IIIB cytotoxic T-lymphocyte (CTL) epitope of the gp160 envelope protein from an HIV-1 IIIB isolate (P18IIIB; RIQRGPGRAFVTIGK) can induce a specific immune response in regional mucosal lymph nodes, as well as in a systemic site (the spleen). A single inoculation of mice with the recombinant influenza virus induced long-lasting (at least 5 months) antigen-specific CTL memory detectable as a rapid recall of effector CTLs upon vaginal infection with recombinant vaccinia virus expressing HIV-1 IIIB envelope gene products. Long-term antigen-specific CTL memory was also induced and maintained in distant mucosal tissues when mice were intranasally immunized with the recombinant influenza virus. These results indicate that mucosal immunization and, in particular, local vaginal immunization with recombinant influenza virus can provide strong, durable immune responses in the female genital tract of mice.


1998 ◽  
Vol 72 (4) ◽  
pp. 2935-2944 ◽  
Author(s):  
Sarah L. Thomas ◽  
Martin Oft ◽  
Herbert Jaksche ◽  
Georg Casari ◽  
Peter Heger ◽  
...  

ABSTRACT The expression of human immunodeficiency virus type 1 (HIV-1) structural proteins requires the action of the viraltrans-regulatory protein Rev. Rev is a nuclear shuttle protein that directly binds to its cis-acting Rev response element (RRE) RNA target sequence. Subsequent oligomerization of Rev monomers on the RRE and interaction of Rev with a cellular cofactor(s) result in the cytoplasmic accumulation of RRE-containing viral mRNAs. Moreover, Rev by itself is exported from the nucleus to the cytoplasm. Although it has been demonstrated that Rev multimerization is critically required for Rev activity and hence for HIV-1 replication, the number of Rev monomers required to form atrans-activation-competent complex on the RRE is unknown. Here we report a systematic analysis of the putative multimerization domains within the Rev trans-activator protein. We identify the amino acid residues which are part of the proposed single hydrophobic surface patch in the Rev amino terminus that mediates intermolecular interactions. Furthermore, we show that the expression of a multimerization-deficient Rev mutant blocks HIV-1 replication in a trans-dominant (dominant-negative) fashion.


2001 ◽  
Vol 75 (5) ◽  
pp. 2246-2252 ◽  
Author(s):  
Tim Beaumont ◽  
Ad van Nuenen ◽  
Silvia Broersen ◽  
William A. Blattner ◽  
Vladimir V. Lukashov ◽  
...  

ABSTRACT The role of humoral immunity in controlling human immunodeficiency virus type 1 (HIV-1) is still controversial. The resistance of primary HIV-1 variants to neutralization by antibodies, sera from HIV-1-infected patients, and soluble CD4 protein has been suggested to be a prerequisite for the virus to establish persistence in vivo. To further test this hypothesis, we studied the neutralization sensitivity of two IIIB/LAV variants that were isolated from a laboratory worker who accidentally was infected with the T-cell-line-adapted neutralization-sensitive IIIB isolate. Compared to the original virus in the inoculum, the reisolated viruses showed an increased resistance to neutralization over time. The ratio of nonsynonymous to synonymous nucleotide substitutions in the envelope gene pointed to strong positive selection. The emergence of neutralization-resistant HIV preceded disease development in this laboratory worker. Our results imply that the neutralization resistance of primary HIV may indeed be considered an escape mechanism from humoral immune control.


2004 ◽  
Vol 78 (9) ◽  
pp. 4710-4719 ◽  
Author(s):  
Joseph F. Bower ◽  
Xinzhen Yang ◽  
Joseph Sodroski ◽  
Ted M. Ross

ABSTRACT DNA vaccines expressing the envelope (Env) of human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting immune responses. Oligomeric or trimeric (gp140) forms of Env that more closely mimic the native proteins on the virion are often more effective immunogens than monomeric (gp120) envelopes. In this study, several forms of Env constructed from the HIV-1 isolate YU-2 (HIV-1YU-2) were tested for their immunogenic potential: a trimeric form of uncleaved (−) Env stabilized with a synthetic trimer motif isolated from the fibritin (FT) protein of the T4 bacteriophage, sgp140YU-2(−/FT), was compared to sgp140YU-2(−) without a synthetic trimerization domain, as well as to monomeric gp120YU-2. DNA plasmids were constructed to express Env alone or fused to various copies of murine C3d (mC3d). BALB/c mice were vaccinated (day 1 and week 4) with DNA expressing a codon-optimized envelope gene insert, alone or fused to mC3d. Mice were subsequently boosted (week 8) with the DNA or recombinant Env protein. All mice had high anti-Env antibody titers regardless of the use of mC3d. Sera from mice vaccinated with DNA expressing non-C3d-fused trimers elicited neutralizing antibodies against homologous HIV-1YU-2 virus infection in vitro. In contrast, sera from mice inoculated with DNA expressing Env-C3d protein trimers elicited antibody that neutralized both homologous HIV-1YU-2 and heterologous HIV-1ADA, albeit at low titers. Therefore, DNA vaccines expressing trimeric envelopes coupled to mC3d, expressed in vivo from codon-optimized sequences, elicit low titers of neutralizing antibodies against primary isolates of HIV-1.


2003 ◽  
Vol 77 (16) ◽  
pp. 9069-9073 ◽  
Author(s):  
Hector R. Rangel ◽  
Jan Weber ◽  
Bikram Chakraborty ◽  
Arantxa Gutierrez ◽  
Michael L. Marotta ◽  
...  

ABSTRACT A human host offers a variety of microenvironments to the infecting human immunodeficiency virus type 1 (HIV-1), resulting in various selective pressures, most of them directed against the envelope (env) gene. Therefore, it seems evident that the replicative capacity of the virus is largely related to viral entry. In this study we have used growth competition experiments and TaqMan real-time PCR detection to measure the fitness of subtype B HIV-1 primary isolates and autologous env-recombinant viruses in order to analyze the contribution of wild-type env sequences to overall HIV-1 fitness. A significant correlation was observed between fitness values obtained for wild-type HIV-1 isolates and those for the corresponding env-recombinant viruses (r = 0.93; P = 0.002). Our results suggest that the env gene, which is linked to a myriad of viral characteristics (e.g., entry into the host cell, transmission, coreceptor usage, and tropism), plays a major role in fitness of wild-type HIV-1. In addition, this new recombinant assay may be useful for measuring the contribution of HIV-1 env to fitness in viruses resistant to novel antiretroviral entry inhibitors.


2003 ◽  
Vol 77 (13) ◽  
pp. 7236-7243 ◽  
Author(s):  
L. K. Venkatesh ◽  
T. Gettemeier ◽  
G. Chinnadurai

ABSTRACT The Rev protein of human immunodeficiency virus type 1 (HIV-1) is essential for the nucleocytoplasmic transport of unspliced and partially spliced HIV mRNAs containing the Rev response element (RRE). In a yeast two-hybrid screen of a HeLa cell-derived cDNA expression library for human factors interacting with the Rev leucine-rich nuclear export sequence (NES), we identified a kinesin-like protein, REBP (Rev/Rex effector binding protein), highly homologous to Kid, the carboxy-terminal 75-residue region of which interacts specifically with the NESs of HIV-1 Rev, human T-cell leukemia virus type 1 Rex, and equine infectious anemia virus Rev but not with functionally inactive mutants thereof. REBP is a nuclear protein that colocalizes with Rev in the nucleoplasm and nuclear periphery of transfected cells. Specific, albeit weak, interaction between REBP and Rev could be demonstrated in coimmunoprecipitation assays in BSC-40 cells. REBP can modestly enhance Rev-dependent RRE-linked reporter gene expression both independently and in cooperation with the nucleoporin cofactor Rab/hRIP. Thus, REBP displays the characteristics expected of an authentic mediator of Rev NES function and may play a role in RRE RNA transport during HIV infection.


2004 ◽  
Vol 78 (6) ◽  
pp. 2841-2852 ◽  
Author(s):  
Georgios Pollakis ◽  
Almaz Abebe ◽  
Aletta Kliphuis ◽  
Moustapha I. M. Chalaby ◽  
Margreet Bakker ◽  
...  

ABSTRACT Individuals infected with human immunodeficiency virus type 1 (HIV-1) subtype C infrequently harbour X4 viruses. We studied R5 and X4 biological clones generated from HIV-1 subtype C-infected individuals. All subtype C R5 viruses demonstrated slower profiles of replication on CD4+ lymphocytes in comparison to subtype B viruses, whereas subtype C X4 viruses replicated with comparable efficiency to subtype B X4 viruses. No differences were identified in CC or CXC chemokine inhibitions (RANTES and SDF-1α, respectively) between subtype C and subtype B viruses. Immature dendritic cells were shown in coculture experiments to similarly enhance the infection of subtype C and subtype B R5 as well as X4 viruses. By amino acid sequence analysis, we showed that the R5 and X4 subtype C gp120 envelope gene alterations were similar to those for a switching subtype B virus, specifically with respect to the V3 charge and envelope N-linked glycosylation patterns. By phylogenetic analysis, we showed that one patient was infected with HIV-1 C′ and the other was infected with HIV-1 C" and that one of the patients harbored a virus that was a recombinant in the gp120 env gene between an R5 and an X4 virus, with the resultant virus being R5. No differences were identified between the long terminal repeat regions of the subtype C R5 and X4 biological clones. These results indicate that even though R5 subtype C viruses are restrictive for virus replication, the R5-to-X4 phenotype switch can occur and does so in a manner similar to that of subtype B viruses.


2009 ◽  
Vol 83 (17) ◽  
pp. 8525-8535 ◽  
Author(s):  
Nathan M. Sherer ◽  
Chad M. Swanson ◽  
Stelios Papaioannou ◽  
Michael H. Malim

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) assembles poorly in murine cells, reflecting inefficient targeting of the Gag structural polyprotein to the plasma membrane. Virus particle production can be restored by replacing the cis-acting Rev response element (RRE) in Gag-Pol mRNAs with multiple copies of the CTE (4×CTE), suggesting a mechanistic link between HIV-1 RNA trafficking and productive Gag assembly. In this report, we demonstrate that Gag molecules generated from RRE-dependent transcripts are intrinsically defective for assembly in murine 3T3 cells. When controlled for the intracellular Gag level, modulations of the Gag matrix (MA) domain that enhance Gag membrane association (e.g., deletion of the MA globular head) substantially improve assembly for Gag derived from RRE- but not 4×CTE-dependent transcripts. Gag mutants carrying a leucine zipper replacement of the nucleocapsid (NC) domain remain largely assembly defective when derived from RRE-dependent transcripts, indicating that the defect does not reflect aberrant NC/RNA-driven Gag multimerization. We further demonstrate that single changes in uncharged amino acids implicated in Gag/MA myristoyl switch regulation, most notably replacing the leucine at position 21 with serine, improve assembly for Gag derived from RRE-dependent transcripts. In sum, we provide genetic evidence to suggest that HIV-1 RNA metabolism specifically modulates the activation of MA-dependent membrane targeting.


Sign in / Sign up

Export Citation Format

Share Document