scholarly journals Self-Assembly of Epstein-Barr Virus Capsids

2009 ◽  
Vol 83 (8) ◽  
pp. 3877-3890 ◽  
Author(s):  
Brandon W. Henson ◽  
Edward M. Perkins ◽  
Jonathan E. Cothran ◽  
Prashant Desai

ABSTRACT Epstein-Barr virus (EBV), a member of the Gammaherpesvirus family, primarily infects B lymphocytes and is responsible for a number of lymphoproliferative diseases. The molecular genetics of the assembly pathway and high-resolution structural analysis of the capsid have not been determined for this lymphocryptovirus. As a first step in studying EBV capsid assembly, the baculovirus expression vector (BEV) system was used to express the capsid shell proteins BcLF1 (major capsid protein), BORF1 (triplex protein), BDLF1 (triplex protein), and BFRF3 (small capsid protein); the internal scaffold protein, BdRF1; and the maturational protease (BVRF2). Coinfection of insect cells with the six viruses expressing these proteins resulted in the production of closed capsid structures as judged by electron microscopy and sedimentation methods. Therefore, as shown for other herpesviruses, only six proteins are required for EBV capsid assembly. Furthermore, the small capsid protein of EBV (BFRF3), like that of Kaposi's sarcoma-associated herpesvirus, was found to be required for assembly of a stable structure. Localization of the small capsid protein to nuclear assembly sites required both the major capsid (BcLF1) and scaffold proteins (BdRF1) but not the triplex proteins. Mutational analysis of BFRF3 showed that the N-terminal half (amino acids 1 to 88) of this polypeptide is required and sufficient for capsid assembly. A region spanning amino acids 65 to 88 is required for the concentration of BFRF3 at a subnuclear site and the N-terminal 65 amino acids contain the sequences required for interaction with major capsid protein. These studies have identified the multifunctional role of the gammaherpesvirus small capsid proteins.

2015 ◽  
Vol 89 (17) ◽  
pp. 8922-8931 ◽  
Author(s):  
Wen-Hung Wang ◽  
Chung-Wen Kuo ◽  
Li-Kwan Chang ◽  
Chen-Chia Hung ◽  
Tzu-Hsuan Chang ◽  
...  

ABSTRACTThe Epstein-Barr virus (EBV) capsid contains a major capsid protein, VCA; two minor capsid proteins, BDLF1 and BORF1; and a small capsid protein, BFRF3. During the lytic cycle, these capsid proteins are synthesized and imported into the host nucleus for capsid assembly. This study finds that EBV capsid proteins colocalize with promyelocytic leukemia (PML) nuclear bodies (NBs) in P3HR1 cells during the viral lytic cycle, appearing as nuclear speckles under a confocal laser scanning microscope. In a glutathioneS-transferase pulldown study, we show that BORF1 interacts with PML-NBsin vitro. BORF1 also colocalizes with PML-NBs in EBV-negative Akata cells after transfection and is responsible for bringing VCA and the VCA-BFRF3 complex from the cytoplasm to PML-NBs in the nucleus. Furthermore, BDLF1 is dispersed throughout the cell when expressed alone but colocalizes with PML-NBs when BORF1 is also present in the cell. In addition, this study finds that knockdown of PML expression by short hairpin RNA does not influence the intracellular levels of capsid proteins but reduces the number of viral particles produced by P3HR1 cells. Together, these results demonstrate that BORF1 plays a critical role in bringing capsid proteins to PML-NBs, which may likely be the assembly sites of EBV capsids. The mechanisms elucidated in this study are critical to understanding the process of EBV capsid assembly.IMPORTANCECapsid assembly is an important event during the Epstein-Barr virus (EBV) lytic cycle, as this process is required for the production of virions. In this study, confocal microscopy revealed that the EBV capsid protein BORF1 interacts with promyelocytic leukemia (PML) nuclear bodies (NBs) in the host nucleus and is responsible for transporting the other EBV capsid proteins, including VCA, BDLF1, and BFRF3, to these subnuclear locations prior to initiation of capsid assembly. This study also found that knockdown of PML expression by short hairpin RNA significantly reduces EBV capsid assembly capabilities. This enhanced understanding of capsid assembly offers potential for the development of novel antiviral strategies and therapies that can prevent the propagation and spread of EBV.


2006 ◽  
Vol 94 (6) ◽  
pp. 1129-1137 ◽  
Author(s):  
Maggie Y.T. Lee ◽  
Yuanxiang Zhou ◽  
Raymond W.M. Lung ◽  
Mee-Len Chye ◽  
Wing-Kin Yip ◽  
...  

2015 ◽  
Vol 90 (5) ◽  
pp. 2285-2293 ◽  
Author(s):  
Britta S. Möhl ◽  
Christina Schröter ◽  
Barbara G. Klupp ◽  
Walter Fuchs ◽  
Thomas C. Mettenleiter ◽  
...  

ABSTRACTHerpesviruses infect cells using the conserved core fusion machinery composed of glycoprotein B (gB) and gH/gL. The gH/gL complex plays an essential but still poorly characterized role in membrane fusion and cell tropism. Our previous studies demonstrated that the conserved disulfide bond (DB) C278/C335 in domain II (D-II) of Epstein-Barr virus (EBV) gH has an epithelial cell-specific function, whereas the interface of D-II/D-III is involved in formation of the B cell entry complex by binding to gp42. To extend these studies, we compared gH of the alphaherpesvirus pseudorabies virus (PrV) with gH of the gammaherpesvirus EBV to identify functionally equivalent regions critical for gH function during entry. We identified several conserved amino acids surrounding the conserved DB that connects three central helices of D-III of PrV and EBV gH. The present study verified that the conserved DB and several contacting amino acids in D-III modulate cell surface expression and thereby contribute to gH function. In line with this finding, we found that DB C404/C439 and T401 are important for cell-to-cell spread and efficient entry of PrV. This parallel comparison between PrV and EBV gH function brings new insights into how gH structure impacts fusion function during herpesvirus entry.IMPORTANCEThe alphaherpesvirus PrV is known for its neuroinvasion, whereas the gammaherpesvirus EBV is associated with cancer of epithelial and B cell origin. Despite low amino acid conservation, PrV gH and EBV gH show strikingly similar structures. Interestingly, both PrV gH and EBV gH contain a structural motif composed of a DB and supporting amino acids which is highly conserved within theHerpesviridae. Our study verified that PrV gH uses a minimal motif with the DB as the core, whereas the DB of EBV gH forms extensive connections through hydrogen bonds to surrounding amino acids, ensuring the cell surface expression of gH/gL. Our study verifies that the comparative analysis of distantly related herpesviruses, such as PrV and EBV, allows the identification of common gH functions. In addition, we provide an understanding of how functional domains can evolve over time, resulting in subtle differences in domain structure and function.


1996 ◽  
Vol 77 (5) ◽  
pp. 991-996 ◽  
Author(s):  
C. Sauder ◽  
N. Gotzinger ◽  
W. H. Schubach ◽  
G. C. Horvath ◽  
E. Kremmer ◽  
...  

1989 ◽  
Vol 140 ◽  
pp. 531-543 ◽  
Author(s):  
A. Sanchez-Pinel ◽  
J. Bernad ◽  
H. Rives ◽  
J. Icart ◽  
J. Didier

2010 ◽  
Vol 84 (19) ◽  
pp. 9920-9931 ◽  
Author(s):  
Andreas M. F. Heilmann ◽  
Michael A. Calderwood ◽  
Eric Johannsen

ABSTRACT The switch from Epstein-Barr virus (EBV) latent infection to lytic replication is governed by two viral transactivators, Zta and Rta. We previously reported that the EBV protein LF2 binds Rta, inhibits Rta promoter activation, and blocks EBV replication in cells. In addition, LF2 induces SUMO2/3 modification of Rta. We now show that this modification occurs at four lysines within the Rta activation domain (426, 446, 517, and 530) and that sumoylation of Rta is not essential for its repression. Coexpression studies demonstrated that Rta is sequestered to the extranuclear cytoskeleton in the presence of LF2. We mapped the LF2 binding site to Rta amino acids (aa) 476 to 519 and showed that LF2 binding is critical for Rta relocalization and repression. The core of this binding site, Rta aa 500 to 526, confers LF2-mediated relocalization and repression onto the artificial transcription factor GAL4-VP16. Mutational analysis of LF2 provided further evidence that Rta redistribution is essential for repression. Rta localization changes during replication of the LF2-positive P3HR1 genome, but not during replication of the LF2-negative B95-8 genome. BLRF2 protein expression was decreased and delayed in P3HR1 cells compared with B95-8 cells, consistent with reduced Rta activity. By contrast, BMRF1 expression, regulated primarily by Zta, did not differ significantly between the two cell lines. Our results support a model in which LF2 regulates EBV replication by binding to Rta and redistributing it out of the nucleus.


2004 ◽  
Vol 78 (23) ◽  
pp. 12857-12867 ◽  
Author(s):  
Jason S. Knight ◽  
Nikhil Sharma ◽  
Danielle E. Kalman ◽  
Erle S. Robertson

ABSTRACT The Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is a virus-encoded latent antigen essential for primary B-cell transformation. In this report we demonstrate that although the carboxy terminus of EBNA3C predominantly regulates cyclin A-dependent kinase activity, the region of greatest affinity for cyclin A lies within the EBNA3 amino-terminal homology domain of EBNA3C. Detailed mapping studies employing both in vitro binding assays and coimmunoprecipitation experiments implicated a small region of EBNA3C, amino acids 130 to 159 within the EBNA3 homology domain, as having the greatest affinity for cyclin A. The EBNA3 homology domain has the highest degree of amino acid similarity (approximately 30%) between the EBNA3 proteins, and, indeed, EBNA3B, but not EBNA3A, showed binding activity with cyclin A. We also show that EBNA3C binds to the α1 helix of the highly conserved mammalian cyclin box, with cyclin A amino acids 206 to 226 required for strong binding to EBNA3C amino acids 130 to 159. Interestingly, EBNA3C also bound human cyclins D1 and E in vitro, although the affinity was approximately 30% of that seen for cyclin A. Previously it was demonstrated that full-length EBNA3C rescues p27-mediated suppression of cyclin A-dependent kinase activity (J. S. Knight and E. S. Robertson, J. Virol. 78:1981-1991, 2004). It was also demonstrated that the carboxy terminus of EBNA3C recapitulates this phenotype. Surprisingly, the amino terminus of EBNA3C with the highest affinity for cyclin A was unable to rescue p27 suppression of kinase activity and actually downregulates cyclin A activity when introduced into EBV-infected cells. The data presented here suggests that the amino terminus of EBNA3C may play an important role in recruiting cyclin A complexes, while the carboxy terminus of EBNA3C is necessary for the functional modulation of cyclin A complex kinase activity.


2009 ◽  
Vol 83 (9) ◽  
pp. 4345-4353 ◽  
Author(s):  
Christopher B. Whitehurst ◽  
Shunbin Ning ◽  
Gretchen L. Bentz ◽  
Florent Dufour ◽  
Edward Gershburg ◽  
...  

ABSTRACT A newly discovered virally encoded deubiquitinating enzyme (DUB) is strictly conserved across the Herpesviridae. Epstein-Barr virus (EBV) BPLF1 encodes a tegument protein (3,149 amino acids) that exhibits deubiquitinating (DUB) activity that is lost upon mutation of the active-site cysteine. However, targets for the herpesviral DUBs have remained elusive. To investigate a predicted interaction between EBV BPLF1 and EBV ribonucleotide reductase (RR), a functional clone of the first 246 N-terminal amino acids of BPLF1 (BPLF1 1-246) was constructed. Immunoprecipitation verified an interaction between the small subunit of the viral RR2 and BPLF1 proteins. In addition, the large subunit (RR1) of the RR appeared to be ubiquitinated both in vivo and in vitro; however, ubiquitinated forms of the small subunit, RR2, were not detected. Ubiquitination of RR1 requires the expression of both subunits of the RR complex. Furthermore, coexpression of RR1 and RR2 with BPLF1 1-246 abolishes ubiquitination of RR1. EBV RR1, RR2, and BPLF1 1-246 colocalized to the cytoplasm in HEK 293T cells. Finally, expression of enzymatically active BPLF1 1-246 decreased RR activity, whereas a nonfunctional active-site mutant (BPLF1 C61S) had no effect. These results indicate that the EBV deubiquitinating enzyme interacts with, deubiquitinates, and influences the activity of the EBV RR. This is the first verified protein target of the EBV deubiquitinating enzyme.


1998 ◽  
Vol 72 (2) ◽  
pp. 1365-1376 ◽  
Author(s):  
Anna Sjöblom ◽  
Weiwen Yang ◽  
Lars Palmqvist ◽  
Ann Jansson ◽  
Lars Rymo

ABSTRACT The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is a viral oncogene whose expression is regulated by both viral and cellular factors. EBV nuclear antigen 2 (EBNA2) is a potent transactivator of LMP1 expression in human B cells, and several EBNA2 response elements have been identified in the promoter regulatory sequence (LRS). We have previously shown that an activating transcription factor/cyclic AMP response element (ATF/CRE) site in LRS is involved in EBNA2 responsiveness. We now establish the importance of the ATF/CRE element by mutational analysis and show that both EBNA2-dependent activation and EBNA2-independent activation of the promoter occur via this site but are mediated by separate sets of factors. An electrophoretic mobility shift assay (EMSA) with specific antibodies showed that the ATF-1, CREB-1, ATF-2 and c-Jun factors bind to the site as ATF-1/CREB-1 and ATF-2/c-Jun heterodimers whereas the Sp1 and Sp3 factors bind to an adjacent Sp site. Overexpression of ATF-1 and CREB-1 in the cells by expression vectors demonstrated that homodimeric as well as heterodimeric forms of the factors transactivate the LMP1 promoter in an EBNA2-independent manner. The homodimers of ATF-2 and c-Jun did not significantly stimulate promoter activity. In contrast, the ATF-2/c-Jun heterodimer had only a minor stimulatory effect in the absence of EBNA2 but induced a strong transactivation of the LMP1 promoter when coexpressed with this protein. Evidence for a direct interaction between the ATF-2/c-Jun heterodimeric complex and EBNA2 was obtained by EMSA and coimmunoprecipitation experiments. Thus, our results suggest that EBNA2-induced transactivation via the ATF/CRE site occurs through a direct contact between EBNA2 and an ATF-2/c-Jun heterodimer. EBNA2-independent promoter activation via this site, on the other hand, is mediated by a heterodimeric complex between the ATF-1 and CREB-1 factors.


Sign in / Sign up

Export Citation Format

Share Document