scholarly journals Pseudodiploid Genome Organization Aids Full-Length Human Immunodeficiency Virus Type 1 DNA Synthesis

2007 ◽  
Vol 82 (5) ◽  
pp. 2376-2384 ◽  
Author(s):  
Steven R. King ◽  
Nisha K. Duggal ◽  
Clement B. Ndongmo ◽  
Crystal Pacut ◽  
Alice Telesnitsky

ABSTRACT Template switching between copackaged human immunodeficiency virus type 1 (HIV-1) genomic RNAs is genetically silent when identical RNAs are copackaged but yields recombinants when virions contain two distinct RNAs. Sequencing has revealed that errors at retroviral recombination junctions are infrequent, suggesting that template switching is not intrinsically mutagenic. Here, we tested the hypothesis that template switching may instead contribute to replication fidelity. This hypothesis predicts that reverse transcription of a single-copy gene will be more error prone than replication in the presence of a second copy. To test this, HIV-1-based vectors containing both lacZ and the puromycin resistance marker were expressed either alone or with an excess of an “empty” vector lacking lacZ and puro. This resulted in virions with either RNA homodimers or haploid genomes with only a single lacZ-puro RNA. In untreated cells, lacZ inactivation rates suggested that haploid vector reverse transcription was slightly more error prone than that of homodimerized pseudodiploid vectors. Haploid reverse transcription was at least threefold more error prone than pseudodiploid-templated synthesis when slowed by hydroxyurea treatment or stopped prematurely with zidovudine. Individual products of one- and two-copy genes revealed both nucleotide substitutions and deletions, with deletions more frequent than point mutations among haploid genome products. Similar spectra of defective products were observed at early reverse transcription time points and among products of haploid virions. These results indicate that faithful, full-length reverse transcription products were underrepresented in the absence of a reserve of genetic information and suggest that template switching contributes to HIV-1 genomic integrity.

2003 ◽  
Vol 77 (5) ◽  
pp. 3020-3030 ◽  
Author(s):  
Ebbe Sloth Andersen ◽  
Rienk E. Jeeninga ◽  
Christian Kroun Damgaard ◽  
Ben Berkhout ◽  
Jørgen Kjems

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) particle contains two identical RNA strands, each corresponding to the entire genome. The 5′ untranslated region (UTR) of each RNA strand contains extensive secondary and tertiary structures that are instrumental in different steps of the viral replication cycle. We have characterized the 5′ UTRs of nine different HIV-1 isolates representing subtypes A through G and, by comparing their homodimerization and heterodimerization potentials, found that complementarity between the palindromic sequences in the dimerization initiation site (DIS) hairpins is necessary and sufficient for in vitro dimerization of two subtype RNAs. The 5′ UTR sequences were used to design donor and acceptor templates for a coupled in vitro dimerization-reverse transcription assay. We showed that template switching during reverse transcription is increased with a matching DIS palindrome and further stimulated proportional to the level of homology between the templates. The presence of the HIV-1 nucleocapsid protein NCp7 increased the template-switching efficiency for matching DIS palindromes twofold, whereas the recombination efficiency was increased sevenfold with a nonmatching palindrome. Since NCp7 did not effect the dimerization of nonmatching palindromes, we concluded that the protein most likely stimulates the strand transfer reaction. An analysis of the distribution of template-switching events revealed that it occurs throughout the 5′ UTR. Together, these results demonstrate that the template switching of HIV-1 reverse transcriptase occurs frequently in vitro and that this process is facilitated mainly by template proximity and the level of homology.


2003 ◽  
Vol 77 (2) ◽  
pp. 1469-1480 ◽  
Author(s):  
James S. Buckman ◽  
William J. Bosche ◽  
Robert J. Gorelick

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) containing mutations in the nucleocapsid (NC) Zn2+ finger domains have greatly reduced infectivity, even though genome packaging is largely unaffected in certain cases. To examine replication defects, viral DNA (vDNA) was isolated from cells infected with viruses containing His-to-Cys changes in their Zn2+ fingers (NCH23C and NCH44C), an integrase mutant (IND116N), a double mutant (NCH23C/IND116N), or wild-type HIV-1. In vitro assays have established potential roles for NC in reverse transcription and integration. In vivo results for these processes were obtained by quantitative PCR, cloning of PCR products, and comparison of the quantity and composition of vDNA generated at discrete points during reverse transcription. Quantitative analysis of the reverse transcription intermediates for these species strongly suggests decreased stability of the DNA produced. Both Zn2+ finger mutants appear to be defective in DNA synthesis, with the minus- and plus-strand transfer processes being affected while interior portions of the vDNA remain more intact. Sequences obtained from PCR amplification and cloning of 2-LTR circle junction fragments revealed that the NC mutants had a phenotype similar to the IN mutant; removal of the terminal CA dinucleotides necessary for integration of the vDNA is disabled by the NC mutations. Thus, the loss of infectivity in these NC mutants in vivo appears to result from defective reverse transcription and integration processes stemming from decreased protection of the full-length vDNA. Finally, these results indicate that the chaperone activity of NC extends from the management of viral RNA through to the full-length vDNA.


2003 ◽  
Vol 77 (8) ◽  
pp. 4710-4721 ◽  
Author(s):  
Mini Balakrishnan ◽  
Bernard P. Roques ◽  
Philip J. Fay ◽  
Robert A. Bambara

ABSTRACT The biochemical mechanism of template switching by human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and the role of template dimerization were examined. Homologous donor-acceptor template pairs derived from the HIV-1 untranslated leader region and containing the wild-type and mutant dimerization initiation sequences (DIS) were used to examine the efficiency and distribution of transfers. Inhibiting donor-acceptor interaction was sufficient to reduce transfers in DIS-containing template pairs, indicating that template dimerization, and not the mere presence of the DIS, promotes efficient transfers. Additionally, we show evidence that the overall transfer process spans an extended region of the template and proceeds through a two-step mechanism. Transfer is initiated through an RNase H-facilitated acceptor invasion step, while synthesis continues on the donor template. The invasion then propagates towards the primer terminus by branch migration. Transfer is completed with the translocation of the primer terminus at a site distant from the invasion point. In our system, most invasions initiated before synthesis reached the DIS. However, transfer of the primer terminus predominantly occurred after synthesis through the DIS. The two steps were separated by 60 to 80 nucleotides. Sequence markers revealed the position of primer terminus switch, whereas DNA oligomers designed to block acceptor-cDNA interactions defined sites of invasion. Within the region of homology, certain positions on the template were inherently more favorable for invasion than others. In templates with DIS, the proximity of the acceptor facilitates invasion, thereby enhancing transfer efficiency. Nucleocapsid protein enhanced the overall efficiency of transfers but did not alter the mechanism.


2006 ◽  
Vol 80 (23) ◽  
pp. 11710-11722 ◽  
Author(s):  
Fei Guo ◽  
Shan Cen ◽  
Meijuan Niu ◽  
Jenan Saadatmand ◽  
Lawrence Kleiman

ABSTRACT Cells are categorized as being permissive or nonpermissive according to their ability to produce infectious human immunodeficiency virus type 1 (HIV-1) lacking the viral protein Vif. Nonpermissive cells express the human cytidine deaminase APOBEC3G (hA3G), and Vif has been shown to bind to APOBEC3G and facilitate its degradation. Vif-negative HIV-1 virions produced in nonpermissive cells incorporate hA3G and have a severely reduced ability to produce viral DNA in newly infected cells. While it has been proposed that the reduction in DNA production is due to hA3G-facilitated deamination of cytidine, followed by DNA degradation, we provide evidence here that a decrease in the synthesis of the DNA by reverse transcriptase may account for a significant part of this reduction. During the infection of cells with Vif-negative HIV-1 produced from 293T cells transiently expressing hA3G, much of the inhibition of early (≥50% reduction) and late (≥95% reduction) viral DNA production, and of viral infectivity (≥95% reduction), can occur independently of DNA deamination. The inhibition of the production of early minus-sense strong stop DNA is also correlated with a similar inability of tRNA3 Lys to prime reverse transcription. A similar reduction in tRNA3 Lys priming and viral infectivity is also seen in the naturally nonpermissive cell H9, albeit at significantly lower levels of hA3G expression.


2002 ◽  
Vol 76 (15) ◽  
pp. 7897-7902 ◽  
Author(s):  
Wenfeng An ◽  
Alice Telesnitsky

ABSTRACT Genetic recombination contributes to human immunodeficiency virus type 1 (HIV-1) diversity, with homologous recombination being more frequent than nonhomologous recombination. In this study, HIV-1-based vectors were used to assay the effects of various extents of sequence divergence on the frequency of the recombination-related property of repeat deletion. Sequence variation, similar in degree to that which differentiates natural HIV-1 isolates, was introduced by synonymous substitutions into a gene segment. Repeated copies of this segment were then introduced into assay vectors. With the use of a phenotypic screen, the deletion frequency of identical repeats was compared to the frequencies of repeats that differed in sequence by various extents. During HIV-1 reverse transcription, the deletion frequency observed with repeats that differed by 5% was 65% of that observed with identical repeats. The deletion frequency decreased to 26% for repeats that differed by 9%, and when repeats differed by 18%, the deletion frequency was about 5% of the identical repeat value. Deletion frequencies fell to less than 0.3% of identical repeat values when genetic distances of 27% or more were examined. These data argue that genetic variation is not as inhibitory to HIV-1 repeat deletion as it is to the corresponding cellular process and suggest that, for sequences that differ by about 25% or more, HIV-1 recombination directed by sequence homology may be no more frequent than that which is homology independent.


1996 ◽  
Vol 12 (14) ◽  
pp. 1329-1339 ◽  
Author(s):  
MIKA O. SALMINEN ◽  
BO JOHANSSON ◽  
ANDERS SÖNNERBORG ◽  
SEYOUM AYEHUNIE ◽  
DEANNA GOTTE ◽  
...  

2002 ◽  
Vol 76 (5) ◽  
pp. 2329-2339 ◽  
Author(s):  
Nancy Beerens ◽  
Ben Berkhout

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) reverse transcription is primed by the cellular tRNA3 Lys molecule, which binds, with its 3"-terminal 18 nucleotides (nt), to a complementary sequence in the viral genome, the primer-binding site (PBS). Besides PBS-anti-PBS pairing, additional interactions between viral RNA sequences and the tRNA primer are thought to regulate the process of reverse transcription. We previously identified a novel 8-nt sequence motif in the U5 region of the HIV-1 RNA genome that is critical for tRNA3 Lys-mediated initiation of reverse transcription in vitro. This motif activates initiation from the natural tRNA3 Lys primer but is not involved in tRNA placement and was therefore termed primer activation signal (PAS). It was proposed that the PAS interacts with the anti-PAS motif in the TΨC arm of tRNA3 Lys. In this study, we analyzed several PAS-mutated viruses and performed reverse transcription assays with virion-extracted RNA-tRNA complexes. Mutation of the PAS reduced the efficiency of tRNA-primed reverse transcription. In contrast, mutations in the opposing leader sequence that trigger release of the PAS from base pairing stimulated reverse transcription. These results are similar to the reverse transcription effects observed in vitro. We also selected revertant viruses that partially overcome the reverse transcription defect of the PAS deletion mutant. Remarkably, all revertants acquired a single nucleotide substitution that does not restore the PAS sequence but that stimulates elongation of reverse transcription. These combined results indicate that the additional PAS-anti-PAS interaction is needed to assemble an initiation-competent and processive reverse transcription complex.


2000 ◽  
Vol 74 (18) ◽  
pp. 8324-8334 ◽  
Author(s):  
Yuki Ohi ◽  
Jared L. Clever

ABSTRACT The genome of human immunodeficiency virus type 1 (HIV-1) contains two direct repeats (R) of 97 nucleotides at each end. These elements are of critical importance during the first-strand transfer of reverse transcription, during which the minus-strand strong-stop DNA (−sssDNA) is transferred from the 5′ end to the 3′ end of the genomic RNA. This transfer is critical for the synthesis of the full-length minus-strand cDNA. These repeats also contain a variety of other functional domains involved in many aspects of the viral life cycle. In this study, we have introduced a series of mutations into the 5′, the 3′, or both R sequences designed to avoid these other functional domains. Using a single-round infectivity assay, we determined the ability of these mutants to undergo the various steps of reverse transcription utilizing a semiquantitative PCR analysis. We find that mutations within the first 10 nucleotides of either the 5′ or the 3′ R sequence resulted in virions that were markedly defective for reverse transcription in infected cells. These mutations potentially introduce mismatches between the full-length −sssDNA and 3′ acceptor R. Even mutations that would create relatively small mismatches, as little as 3 bp, resulted in inefficient reverse transcription. In contrast, virions containing identically mutated R elements were not defective for reverse transcription or infectivity. Using an endogenous reverse transcription assay with disrupted virus, we show that virions harboring the 5′ or the 3′ R mutations were not intrinsically defective for DNA synthesis. Similarly sized mismatches slightly further downstream in either the 5′, the 3′, or both R sequences were not detrimental to continued reverse transcription in infected cells. These data are consistent with the idea that certain mismatches within 10 nucleotides downstream of the U3-R junction in HIV-1 cause defects in the stability of the cDNA before or during the first-strand transfer of reverse transcription leading to the rapid disappearance of the −sssDNA in infected cells. These data also suggest that the great majority of first-strand transfers in HIV-1 occur after the copying of virtually the entire 5′ R.


2010 ◽  
Vol 84 (13) ◽  
pp. 6748-6759 ◽  
Author(s):  
Chad M. Swanson ◽  
Nathan M. Sherer ◽  
Michael H. Malim

ABSTRACT Nuclear RNA processing events, such as 5′ cap formation, 3′ polyadenylation, and pre-mRNA splicing, mark mRNA for efficient translation. Splicing enhances translation via the deposition of the exon-junction complex and other multifunctional splicing factors, including SR proteins. All retroviruses synthesize their structural and enzymatic proteins from unspliced genomic RNAs (gRNAs) and must therefore exploit unconventional strategies to ensure their effective expression. Here, we report that specific SR proteins, particularly SRp40 and SRp55, promote human immunodeficiency virus type 1 (HIV-1) Gag translation from unspliced (intron-containing) viral RNA. This activity does not correlate with nucleocytoplasmic shuttling capacity and, in the case of SRp40, is dependent on the second RNA recognition motif and the arginine-serine (RS) domain. While SR proteins enhance Gag expression independent of RNA nuclear export pathway choice, altering the nucleotide sequence of the gag-pol coding region by codon optimization abolishes this effect. We therefore propose that SR proteins couple HIV-1 gRNA biogenesis to translational utilization.


2000 ◽  
Vol 74 (19) ◽  
pp. 8938-8945 ◽  
Author(s):  
Markus Dettenhofer ◽  
Shan Cen ◽  
Bradley A. Carlson ◽  
Lawrence Kleiman ◽  
Xiao-Fang Yu

ABSTRACT The vif gene of human immunodeficiency virus type 1 (HIV-1) is essential for viral replication, although the functional target of Vif remains elusive. HIV-1 vif mutant virions derived from nonpermissive H9 cells displayed no significant differences in the amount, ratio, or integrity of their protein composition relative to an isogenic wild-type virion. The amounts of the virion-associated viral genomic RNA and tRNA3 Lyswere additionally present at normal levels in vif mutant virions. We demonstrate that Vif associates with RNA in vitro as well as with viral genomic RNA in virus-infected cells. A functionally conserved lentivirus Vif motif was found in the double-stranded RNA binding domain of Xenopus laevis, Xlrbpa. The natural intravirion reverse transcriptase products were markedly reduced invif mutant virions. Moreover, purified vifmutant genomic RNA-primer tRNA complexes displayed severe defects in the initiation of reverse transcription with recombinant reverse transcriptase. These data point to a novel role for Vif in the regulation of efficient reverse transcription through modulation of the virion nucleic acid components.


Sign in / Sign up

Export Citation Format

Share Document