template switching
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 89)

H-INDEX

39
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Nadezhda A. Potapova ◽  
Alexey S. Kondrashov ◽  
Sergei M. Mirkin

AbstractGenomic inversions come in various sizes. While long inversions are relatively easy to identify by aligning high-quality genome sequences, unambiguous identification of microinversions is more problematic. Here, using a set of extra stringent criteria to distinguish microinversions from other mutational events, we describe microinversions that occurred after the divergence of humans and chimpanzees. In total, we found 59 definite microinversions that range from 17 to 33 nucleotides in length. In majority of them, human genome sequences matched exactly the reverse-complemented chimpanzee genome sequences, implying that the inverted DNA segment was copied precisely. All these microinversions were flanked by perfect or nearly perfect inverted repeats pointing to their key role in their formation. Template switching at inverted repeats during DNA replication was previously discussed as a possible mechanism for the microinversion formation. However, many of definite microinversions found by us cannot be easily explained via template switching owing to the combination of the short length and imperfect nature of their flanking inverted repeats. We propose a novel, alternative mechanism that involves repair of a double-stranded break within the inverting segment via microhomology-mediated break-induced replication, which can consistently explain all definite microinversion events.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Dan Chen ◽  
Judit Z. Gervai ◽  
Ádám Póti ◽  
Eszter Németh ◽  
Zoltán Szeltner ◽  
...  

AbstractDefects in BRCA1, BRCA2 and other genes of the homology-dependent DNA repair (HR) pathway cause an elevated rate of mutagenesis, eliciting specific mutation patterns including COSMIC signature SBS3. Using genome sequencing of knock-out cell lines we show that Y family translesion synthesis (TLS) polymerases contribute to the spontaneous generation of base substitution and short insertion/deletion mutations in BRCA1 deficient cells, and that TLS on DNA adducts is increased in BRCA1 and BRCA2 mutants. The inactivation of 53BP1 in BRCA1 mutant cells markedly reduces TLS-specific mutagenesis, and rescues the deficiency of template switch–mediated gene conversions in the immunoglobulin V locus of BRCA1 mutant chicken DT40 cells. 53BP1 also promotes TLS in human cellular extracts in vitro. Our results show that HR deficiency–specific mutagenesis is largely caused by TLS, and suggest a function for 53BP1 in regulating the choice between TLS and error-free template switching in replicative DNA damage bypass.


2022 ◽  
Author(s):  
Yiyan Yang ◽  
Keith Dufault-Thompson ◽  
Rafaela Salgado Fontenele ◽  
Xiaofang Jiang

Insertions in the SARS-CoV-2 genome have the potential to drive viral evolution, but the source of the insertions is often unknown. Recent proposals have suggested that human RNAs could be a source of some insertions, but the small size of many insertions makes this difficult to confirm. Through an analysis of available direct RNA sequencing data from SARS-CoV-2 infected cells, we show that viral-host chimeric RNAs are formed through what are likely stochastic RNA-dependent RNA polymerase template switching events. Through an analysis of the publicly available GISAID SARS-CoV-2 genome collection, we then identified two genomic insertions in circulating SARS-CoV-2 variants that are identical to regions of the human 18S and 28S rRNAs. These results provide direct evidence of the formation of viral-host chimeric sequences and the integration of host genetic material into the SARS-CoV-2 genome, highlighting the potential importance of host-derived insertions in viral evolution.


2022 ◽  
Author(s):  
Katarzyna H Maslowska ◽  
Vincent Pagès

DNA Damage Tolerance (DDT) funcPons to bypass replicaPon-blocking lesions and is divided into two disPnct pathways: error-prone Translesion Synthesis (TLS) and error-free Damage Avoidance (DA). Rad5 is an important player in these processes. Indeed, Saccharomyces cerevisiae Rad5 is a large mulPfuncPonal protein that contains three well defined domains: a RING domain that promotes PCNA polyubiquiPnaPon and a ssDNA-dependent ATPase/helicase domain, that are both conserved in Rad5 human ortholog HLTF. Yeast Rad5 also contains a Rev1-binding domain. In this study we used domain-specific mutants to address the contribuPon of each of the Rad5 funcPons to lesion tolerance. Using an assay based on the inserPon of a single lesion into a defined locus in the genome of a living yeast cell, we demonstrate that Rad5 plays opposite roles in lesion tolerance: i) Rad5 favors error-free lesion bypass by acPvaPng template switching through polyubiquiPnaPon of PCNA; ii) Rad5 is also required for TLS by recruiPng the TLS polymerase Rev1. We also show that the helicase acPvity does not play any role in lesion tolerance/


Author(s):  
Kylee M Sutton ◽  
Christian W Eaton ◽  
Tudor Borza ◽  
Thomas E Burkey ◽  
Benny E Mote ◽  
...  

Abstract Atypical porcine pestivirus (APPV), an RNA virus member of the Flaviviridae family, has been associated with congenital tremor in newborn piglets. Previously reported qPCR-based assays were unable to detect APPV in novel cases of congenital tremor originated from multiple farms from U.S. Midwest (MW). These assays targeted the viral polyprotein coding genes, which were shown to display substantial variation, with sequence identity ranging from 58.2 to 70.7% among 15 global APPV strains. In contrast, the 5’ UTR was found to have a much higher degree of sequence conservation. In order to obtain the complete 5’ UTR of the APPV strains originated from MW, the 5’ end of the viral cDNA was obtained by using template switching approach followed by amplification and dideoxy sequencing. Eighty one percent of the 5’UTR was identical across 14 global and 5 MW strains with complete, or relatively complete 5’ UTR. Notably, some of the most highly conserved 5’UTR segments overlapped with potentially important regions of an internal ribosome entry site (IRES), suggesting their functional role in viral protein translation. A newly designed single qPCR assay, targeting 100% conserved 5’UTR regions across 19 strains, was able to detect APPV in samples of well documented cases of congenital tremor which originated from five MW farm sites (1-18 samples/site). As these fully conserved 5’ UTR sequences may have functional importance, we expect that assays targeting this region would broadly detect APPV strains that are diverse in space and time.


2021 ◽  
Author(s):  
AJ Venkatakrishnan ◽  
Praveen Anand ◽  
Patrick Lenehan ◽  
Rohit Suratekar ◽  
Bharathwaj Raghunathan ◽  
...  

The emergence of a heavily mutated SARS-CoV-2 variant (B.1.1.529, Omicron) and it’s spread to 6 continents within a week of initial discovery has set off a global public health alarm. Characterizing the mutational profile of Omicron is necessary to interpret its shared or distinctive clinical phenotypes with other SARS-CoV-2 variants. We compared the mutations of Omicron with prior variants of concern (Alpha, Beta, Gamma, Delta), variants of interest (Lambda, Mu, Eta, Iota and Kappa), and all 1523 SARS-CoV-2 lineages constituting 5.4 million SARS-CoV-2 genomes. Omicron’s Spike protein has 26 amino acid mutations (23 substitutions, two deletions and one insertion) that are distinct compared to other variants of concern. Whereas the substitution and deletion mutations have appeared in previous SARS-CoV-2 lineages, the insertion mutation (ins214EPE) has not been previously observed in any SARS-CoV-2 lineage other than Omicron. The nucleotide sequence encoding for ins214EPE could have been acquired by template switching involving the genomes of other viruses that infect the same host cells as SARS-CoV-2 or the human transcriptome of host cells infected with SARS-CoV-2. For instance, given recent clinical reports of co-infections in COVID-19 patients with seasonal coronaviruses (e.g. HCoV-229E), single cell RNA-sequencing data showing co-expression of the SARS-CoV-2 and HCoV-229E entry receptors (ACE2 and ANPEP) in respiratory and gastrointestinal cells, and HCoV genomes harboring sequences homologous to the nucleotide sequence that encodes ins214EPE, it is plausible that the Omicron insertion could have evolved in a co-infected individual. There is a need to understand the function of the Omicron insertion and whether human host cells are being exploited by SARS-CoV-2 as an ‘evolutionary sandbox’ for host-virus and inter-viral genomic interplay.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sofya K. Garushyants ◽  
Igor B. Rogozin ◽  
Eugene V. Koonin

AbstractThe appearance of multiple new SARS-CoV-2 variants during the COVID-19 pandemic is a matter of grave concern. Some of these variants, such as B.1.617.2, B.1.1.7, and B.1.351, manifest higher infectivity and virulence than the earlier SARS-CoV-2 variants, with potential dramatic effects on the course of the pandemic. So far, analysis of new SARS-CoV-2 variants focused primarily on nucleotide substitutions and short deletions that are readily identifiable by comparison to consensus genome sequences. In contrast, insertions have largely escaped the attention of researchers although the furin site insert in the Spike (S) protein is thought to be a determinant of SARS-CoV-2 virulence. Here, we identify 346 unique inserts of different lengths in SARS-CoV-2 genomes and present evidence that these inserts reflect actual virus variance rather than sequencing artifacts. Two principal mechanisms appear to account for the inserts in the SARS-CoV-2 genomes, polymerase slippage and template switch that might be associated with the synthesis of subgenomic RNAs. At least three inserts in the N-terminal domain of the S protein are predicted to lead to escape from neutralizing antibodies, whereas other inserts might result in escape from T-cell immunity. Thus, inserts in the S protein can affect its antigenic properties and merit monitoring.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2390
Author(s):  
Kirsten Bentley ◽  
Han Kang Tee ◽  
Ashley Pearson ◽  
Kym Lowry ◽  
Sheila Waugh ◽  
...  

Positive-strand RNA virus evolution is partly attributed to the process of recombination. Although common between closely genetically related viruses, such as within species of the Enterovirus genus of the Picornaviridae family, inter-species recombination is rarely observed in nature. Recent studies have shown recombination is a ubiquitous process, resulting in a wide range of recombinant genomes and progeny viruses. While not all recombinant genomes yield infectious progeny virus, their existence and continued evolution during replication have critical implications for the evolution of the virus population. In this study, we utilised an in vitro recombination assay to demonstrate inter-species recombination events between viruses from four enterovirus species, A-D. We show that inter-species recombinant genomes are generated in vitro with polymerase template-switching events occurring within the virus polyprotein coding region. However, these genomes did not yield infectious progeny virus. Analysis and attempted recovery of a constructed recombinant cDNA revealed a restriction in positive-strand but not negative-strand RNA synthesis, indicating a significant block in replication. This study demonstrates the propensity for inter-species recombination at the genome level but suggests that significant sequence plasticity would be required in order to overcome blocks in the virus life cycle and allow for the production of infectious viruses.


2021 ◽  
Author(s):  
Ari Löytynoja

Variation within human genomes is distributed unevenly and variants show spatial clustering. DNA-replication related template switching is a poorly known mutational mechanism capable of causing major chromosomal rearrangements as well as creating short inverted sequence copies that appear as local mutation clusters in sequence comparisons. We reanalyzed haplotype-resolved genome assemblies representing 25 human populations and multinucleotide variants aggregated from 140,000 human sequencing experiments. We found local template switching to explain thousands of complex mutation clusters across the human genome, the loci segregating within and between populations with a small number appearing as de novo mutations. We developed computational tools for genotyping candidate template switch loci using short-read sequencing data and for identification of template switch events using both short-read data and genotype data. These tools will enable building a catalogue of affected loci and studying the cellular mechanisms behind template switching both in healthy organisms and in disease. Strikingly, we noticed that widely-used analysis pipelines for short-read sequencing data - capable of identifying single nucleotide changes - may miss TSM-origin inversions of tens of base pairs, potentially invalidating medical genetic studies searching for causative alleles behind genetic diseases.


2021 ◽  
Author(s):  
Arne de Klerk ◽  
Phillip Ivan Swanepoel ◽  
Rentia Francis Lourens ◽  
Mpumelelo Zondo ◽  
Isaac Abodunran ◽  
...  

Recombination contributes to the genetic diversity found in coronaviruses and is known to be a prominent mechanism whereby they evolve. It is apparent, both from controlled experiments and in genome sequences sampled from nature, that patterns of recombination in coronaviruses are non-random and that this is likely attributable to a combination of sequence features that favour the occurrence of recombination breakpoints at specific genomic sites, and selection disfavouring the survival of recombinants within which favourable intra-genome interactions have been disrupted. Here we leverage available whole-genome sequence data for six coronavirus subgenera to identify specific patterns of recombination that are conserved between multiple subgenera and then identify the likely factors that underlie these conserved patterns. Specifically, we confirm the non-randomness of recombination breakpoints across all six tested coronavirus subgenera, locate conserved recombination hot- and cold-spots, and determine that the locations of transcriptional regulatory sequences are likely major determinants of conserved recombination breakpoint hot-spot locations. We find that while the locations of recombination breakpoints are not uniformly associated with degrees of nucleotide sequence conservation, they display significant tendencies in multiple coronavirus subgenera to occur in low guanine-cytosine content genome regions, in non-coding regions, at the edges of genes, and at sites within the Spike gene that are predicted to be minimally disruptive of Spike protein folding. While it is apparent that sequence features such as transcriptional regulatory sequences are likely major determinants of where the template-switching events that yield recombination breakpoints most commonly occur, it is evident that selection against misfolded recombinant proteins also strongly impacts observable recombination breakpoint distributions in coronavirus genomes sampled from nature.


Sign in / Sign up

Export Citation Format

Share Document