minus strand
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 4)

H-INDEX

49
(FIVE YEARS 2)

2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Katherine E. Roebke ◽  
Pranav Danthi

ABSTRACTThe reovirus outer capsid protein μ1 regulates cell death in infected cells. To distinguish between the roles of incoming, capsid-associated, and newly synthesized μ1, we used small interfering RNA (siRNA)-mediated knockdown. Loss of newly synthesized μ1 protein does not affect apoptotic cell death in HeLa cells but enhances necroptosis in L929 cells. Knockdown of μ1 also affects aspects of viral replication. We found that, while μ1 knockdown results in diminished release of infectious viral progeny from infected cells, viral minus-strand RNA, plus-strand RNA, and proteins that are not targeted by the μ1 siRNA accumulate to a greater extent than in control siRNA-treated cells. Furthermore, we observed a decrease in sensitivity of these viral products to inhibition by guanidine hydrochloride (GuHCl) (which targets minus-strand synthesis to produce double-stranded RNA) when μ1 is knocked down. Following μ1 knockdown, cell death is also less sensitive to treatment with GuHCl. Our studies suggest that the absence of μ1 allows enhanced transcriptional activity of newly synthesized cores and the consequent accumulation of viral gene products. We speculate that enhanced accumulation and detection of these gene products due to μ1 knockdown potentiates receptor-interacting protein 3 (RIP3)-dependent cell death.IMPORTANCEWe used mammalian reovirus as a model to study how virus infections result in cell death. Here, we sought to determine how viral factors regulate cell death. Our work highlights a previously unknown role for the reovirus outer capsid protein μ1 in limiting the induction of a necrotic form of cell death called necroptosis. Induction of cell death by necroptosis requires the detection of viral gene products late in infection; μ1 limits cell death by this mechanism because it prevents excessive accumulation of viral gene products that trigger cell death.


2019 ◽  
Author(s):  
Katherine E Roebke ◽  
Pranav Danthi

ABSTRACTThe reovirus outer capsid protein μ1 regulates cell death in infected cells. To distinguish between the role of incoming, capsid-associated and newly synthesized μ1, we used siRNA-mediated knockdown. Loss of newly synthesized μ1 protein does not impact apoptotic cell death in HeLa cells but enhances necroptosis in L929 cells. Knockdown of μ1 also impacts aspects of viral replication. We found that while μ1 knockdown results in diminished release of infectious viral progeny from infected cells, viral minus strand RNA, plus strand RNA, and proteins that are not targeted by the μ1 siRNA accumulate to a greater extent when compared to control siRNA-treated cells. Furthermore, we observe a decrease in sensitivity of these viral products to inhibition by GuHCl (which targets minus strand synthesis to produce dsRNA) when μ1 is knocked down. Following μ1 knockdown, cell death is also less sensitive to treatment with GuHCl. Our studies suggest that the absence of μ1 allows enhanced transcriptional activity of newly synthesized cores and the consequent accumulation of viral gene products. We speculate that enhanced accumulation and detection of these gene products due to a μ1 knockdown potentiates RIP3 dependent cell death.IMPORTANCEWe use mammalian reovirus as a model to study how virus infections result in cell death. Here, we sought to determine how viral factors regulate cell death. Our work highlights a previously unknown role for reovirus outer capsid protein μ1 in limiting the induction of a necrotic form of cell death called necroptosis. Induction of cell death by necroptosis requires the detection of viral gene products late in infection. μ1 limits cell death by this mechanism because it prevents excessive accumulation of viral gene products that trigger cell death.


2018 ◽  
Vol 92 (20) ◽  
Author(s):  
Zhen Wang ◽  
Wenzhou Wang ◽  
Ya Cheng Cui ◽  
Qinghua Pan ◽  
Weijun Zhu ◽  
...  

ABSTRACTThe clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein 9 (Cas9) gene-editing technology has been used to inactivate viral DNA as a new strategy to eliminate chronic viral infections, including HIV-1. This utility of CRISPR-Cas9 is challenged by the high heterogeneity of HIV-1 sequences, which requires the design of the single guide RNA (sgRNA; utilized by the CRISPR-Cas9 system to recognize the target DNA) to match a specific HIV-1 strain in an HIV patient. One solution to this challenge is to target the viral primer binding site (PBS), which HIV-1 copies from cellular tRNA3Lysin each round of reverse transcription and is thus conserved in almost all HIV-1 strains. In this study, we demonstrate that PBS-targeting sgRNA directs Cas9 to cleave the PBS DNA, which evokes deletions or insertions (indels) and strongly diminishes the production of infectious HIV-1. While HIV-1 escapes from PBS-targeting Cas9/sgRNA, unique resistance mechanisms are observed that are dependent on whether the plus or the minus strand of the PBS DNA is bound by sgRNA. Characterization of these viral escape mechanisms will inform future engineering of Cas9 variants that can more potently and persistently inhibit HIV-1 infection.IMPORTANCEThe results of this study demonstrate that the gene-editing complex Cas9/sgRNA can be programmed to target and cleave HIV-1 PBS DNA, and thus, inhibit HIV-1 infection. Given that almost all HIV-1 strains have the same PBS, which is copied from the cellular tRNA3Lysduring reverse transcription, PBS-targeting sgRNA can be used to inactivate HIV-1 DNA of different strains. We also discovered that HIV-1 uses different mechanisms to resist Cas9/sgRNAs, depending on whether they target the plus or the minus strand of PBS DNA. These findings allow us to predict that a Cas9 variant that uses the CCA sequence as the protospacer adjacent motif (PAM) should more strongly and persistently suppress HIV-1 replication. Together, these data have identified the PBS as the target DNA of Cas9/sgRNA and have predicted how to improve Cas9/sgRNA to achieve more efficient and sustainable suppression of HIV-1 infection, therefore improving the capacity of Cas9/sgRNA in curing HIV-1 infection.


2018 ◽  
Vol 92 (10) ◽  
Author(s):  
Smita Nair ◽  
Adam Zlotnick

ABSTRACTCytidine deaminases inhibit replication of a broad range of DNA viruses by deaminating cytidines on single-stranded DNA (ssDNA) to generate uracil. While several lines of evidence have revealed hepatitis B virus (HBV) genome editing by deamination, it is still unclear which nucleic acid intermediate of HBV is modified. Hepatitis B virus has a relaxed circular double-stranded DNA (rcDNA) genome that is reverse transcribed within virus cores from a RNA template. The HBV genome also persists as covalently closed circular DNA (cccDNA) in the nucleus of an infected cell. In the present study, we found that in HBV-producing HepAD38 and HepG2.2.15 cell lines, endogenous cytidine deaminases edited 10 to 25% of HBV rcDNA genomes, asymmetrically with almost all mutations on the 5′ half of the minus strand. This region corresponds to the last half of the minus strand to be protected by plus-strand synthesis. Within this half of the genome, the number of mutations peaks in the middle. Overexpressed APOBEC3A and APOBEC3G could be packaged in HBV capsids but did not change the amount or distribution of mutations. We found no deamination on pregenomic RNA (pgRNA), indicating that an intact genome is encapsidated and deaminated during or after reverse transcription. The deamination pattern suggests a model of rcDNA synthesis in which pgRNA and then newly synthesized minus-sense single-stranded DNA are protected from deaminase by interaction with the virus capsid; during plus-strand synthesis, when enough dsDNA has been synthesized to displace the remaining minus strand from the capsid surface, the single-stranded DNA becomes deaminase sensitive.IMPORTANCEHost-induced mutation of the HBV genome by APOBEC proteins may be a path to clearing the virus. We examined cytidine-to-thymidine mutations in the genomes of HBV particles grown in the presence or absence of overexpressed APOBEC proteins. We found that genomes were subjected to deamination activity during reverse transcription, which takes place within the virus capsid. These observations provide a direct insight into the mechanics of reverse transcription, suggesting that newly synthesized dsDNA displaces ssDNA from the capsid walls, making the ssDNA accessible to deaminase activity.


2017 ◽  
Vol 2 ◽  
pp. 87 ◽  
Author(s):  
Martin R Billman ◽  
David Rueda ◽  
Charles R M Bangham

Background: The human leukaemia virus HTLV-1 expresses essential accessory genes that manipulate the expression, splicing and transport of viral mRNAs.  Two of these genes,taxandhbz, also promote proliferation of the infected cell, and both genes are thought to contribute to oncogenesis in adult T-cell leukaemia/lymphoma.  The regulation of HTLV-1 proviral latency is not understood. tax,on the proviral plus strand, is usually silent in freshly-isolated cells, whereas the minus-strand-encodedhbzgene is persistently expressed at a low level.  However, the persistently activated host immune response to Tax indicates frequent expression oftaxin vivo. Methods: We used single-molecule RNA-FISH to quantify the expression of HTLV-1 transcripts at the single-cell level in a total of >19,000 cells from five T-cell clones, naturally infected with HTLV-1, isolated by limiting dilution from peripheral blood of HTLV-1-infected subjects. Results: We found strong heterogeneity both within and between clones in the expression of the proviral plus-strand (detected by hybridization to thetaxgene) and the minus-strand (hbzgene). Both genes are transcribed in bursts;taxexpression is enhanced in the absence ofhbz, whilehbzexpression increased in cells with hightaxexpression. Surprisingly, we found thathbzexpression is strongly associated with the S and G2/M phases of the cell cycle, independent oftaxexpression.  Contrary to current belief,hbzis not expressed in all cells at all times, even within one clone.  Inhbz-positive cells, the abundance ofhbztranscripts showed a very strong positive linear correlation with nuclear volume.Conclusions: The occurrence of intense, intermittent plus-strand gene bursts in independent primary HTLV-1-infected T-cell clones from unrelated individuals strongly suggests that the HTLV-1 plus-strand is expressed in burstsin vivo.  Our results offer an explanation for the paradoxical correlations observed between the host immune response and HTLV-1 transcription.


2017 ◽  
Vol 2 ◽  
pp. 87 ◽  
Author(s):  
Martin R Billman ◽  
David Rueda ◽  
Charles R M Bangham

Background: The human leukaemia virus HTLV-1 expresses essential accessory genes that manipulate the expression, splicing and transport of viral mRNAs.  Two of these genes,taxandhbz, also promote proliferation of the infected cell, and both genes are thought to contribute to oncogenesis in adult T-cell leukaemia/lymphoma.  The regulation of HTLV-1 proviral latency is not understood. tax,on the proviral plus strand, is usually silent in freshly-isolated cells, whereas the minus-strand-encodedhbzgene is persistently expressed at a low level.  However, the persistently activated host immune response to Tax indicates frequent expression oftaxin vivo. Methods: We used single-molecule RNA-FISH to quantify the expression of HTLV-1 transcripts at the single-cell level in a total of >19,000 cells from five T-cell clones, naturally infected with HTLV-1, isolated by limiting dilution from peripheral blood of HTLV-1-infected subjects. Results: We found strong heterogeneity both within and between clones in the expression of the proviral plus-strand (detected by hybridization to thetaxgene) and the minus-strand (hbzgene). Both genes are transcribed in bursts;taxexpression is enhanced in the absence ofhbz, whilehbzexpression increased in cells with hightaxexpression. Surprisingly, we found thathbzexpression is strongly associated with the S and G2/M phases of the cell cycle, independent oftaxexpression.  Contrary to current belief,hbzis not expressed in all cells at all times, even within one clone.  Inhbz-positive cells, the abundance ofhbztranscripts showed a very strong positive linear correlation with nuclear volume.Conclusions: The occurrence of intense, intermittent plus-strand gene bursts in independent primary HTLV-1-infected T-cell clones from unrelated individuals strongly suggests that the HTLV-1 plus-strand is expressed in bursts in vivo.  Our results offer an explanation for the paradoxical correlations observed between the host immune response and HTLV-1 transcription.


2017 ◽  
Vol 91 (17) ◽  
Author(s):  
Jun Luo ◽  
Xiuji Cui ◽  
Lu Gao ◽  
Jianming Hu

ABSTRACT Hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multistep and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC DNA to CCC DNA conversion, two 3′ exonucleases, exonuclease I (Exo I) and Exo III, were used in combination to degrade all DNA strands with a free 3′ end, which would nevertheless preserve closed circular DNA in either single-stranded (SS) or double-stranded (DS) form. Indeed, an RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA [cM-RC DNA]) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5′ end of the plus strand in RC DNA, suggesting that minus-strand closing can occur before plus-strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and the factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA, by serving as the viral transcriptional template, is the molecular basis of viral persistence. CCC DNA is converted, in a multistep and ill-understood process, from relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC DNA to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved.


2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Anjuman Ara ◽  
Robin P. Love ◽  
Tyson B. Follack ◽  
Khawaja A. Ahmed ◽  
Madison B. Adolph ◽  
...  

ABSTRACT The APOBEC3 (A3) enzymes, A3G and A3F, are coordinately expressed in CD4+ T cells and can become coencapsidated into HIV-1 virions, primarily in the absence of the viral infectivity factor (Vif). A3F and A3G are deoxycytidine deaminases that inhibit HIV-1 replication by inducing guanine-to-adenine hypermutation through deamination of cytosine to form uracil in minus-strand DNA. The effect of the simultaneous presence of both A3G and A3F on HIV-1 restriction ability is not clear. Here, we used a single-cycle infectivity assay and biochemical analyses to determine if coencapsidated A3G and A3F differ in their restriction capacity from A3G or A3F alone. Proviral DNA sequencing demonstrated that compared to each A3 enzyme alone, A3G and A3F, when combined, had a coordinate effect on hypermutation. Using size exclusion chromatography, rotational anisotropy, and in vitro deamination assays, we demonstrate that A3F promotes A3G deamination activity by forming an A3F/G hetero-oligomer in the absence of RNA which is more efficient at deaminating cytosines. Further, A3F caused the accumulation of shorter reverse transcripts due to decreasing reverse transcriptase efficiency, which would leave single-stranded minus-strand DNA exposed for longer periods of time, enabling more deamination events to occur. Although A3G and A3F are known to function alongside each other, these data provide evidence for an A3F/G hetero-oligomeric A3 with unique properties compared to each individual counterpart. IMPORTANCE The APOBEC3 enzymes APOBEC3F and APOBEC3G act as a barrier to HIV-1 replication in the absence of the HIV-1 Vif protein. After APOBEC3 enzymes are encapsidated into virions, they deaminate cytosines in minus-strand DNA, which forms promutagenic uracils that induce transition mutations or proviral DNA degradation. Even in the presence of Vif, footprints of APOBEC3-catalyzed deaminations are found, demonstrating that APOBEC3s still have discernible activity against HIV-1 in infected individuals. We undertook a study to better understand the activity of coexpressed APOBEC3F and APOBEC3G. The data demonstrate that an APOBEC3F/APOBEC3G hetero-oligomer can form that has unique properties compared to each APOBEC3 alone. This hetero-oligomer has increased efficiency of virus hypermutation, raising the idea that we still may not fully realize the antiviral mechanisms of endogenous APOBEC3 enzymes. Hetero-oligomerization may be a mechanism to increase their antiviral activity in the presence of Vif.


Sign in / Sign up

Export Citation Format

Share Document