scholarly journals Mobility of Human Immunodeficiency Virus Type 1 Pr55Gag in Living Cells

2006 ◽  
Vol 80 (17) ◽  
pp. 8796-8806 ◽  
Author(s):  
Candace Y. Gomez ◽  
Thomas J. Hope

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) assembly requires the converging of thousands of structural proteins on cellular membranes to form a tightly packed immature virion. The Gag polyprotein contains all of the determinants important for viral assembly and must move around in the cell in order to form particles. This work has focused on Gag mobility in order to provide more insights into the dynamics of particle assembly. Key to these studies was the use of several fluorescently labeled Gag derivatives. We used fluorescence recovery after photobleaching as well as photoactivation to determine Gag mobility. Upon expression, Gag can be localized diffusely in the cytoplasm, associated with the plasma membrane, or in virus-like particles (VLPs). Here we show that Gag VLPs are primarily localized in the plasma membrane and do not colocalize with CD63. We have shown using full-length Gag as well as truncation mutants fused to green fluorescent protein that Gag is highly mobile in live cells when it is not assembled into VLPs. Results also showed that this mobility is highly dependent upon cholesterol. When cholesterol is depleted from cells expressing Gag, mobility is significantly decreased. Once cholesterol was replenished, Gag mobility returned to wild-type levels. Taken together, results from these mobility studies suggest that Gag is highly mobile and that as the assembly process proceeds, mobility decreases. These studies also suggest that Gag assembly must occur in cholesterol-rich domains in the plasma membrane.

2008 ◽  
Vol 82 (20) ◽  
pp. 9937-9950 ◽  
Author(s):  
Nathaniel W. Martinez ◽  
Xiaoxiao Xue ◽  
Reem G. Berro ◽  
Geri Kreitzer ◽  
Marilyn D. Resh

ABSTRACT Retroviral Gag proteins are synthesized as soluble, myristoylated precursors that traffic to the plasma membrane and promote viral particle production. The intracellular transport of human immunodeficiency virus type 1 (HIV-1) Gag to the plasma membrane remains poorly understood, and cellular motor proteins responsible for Gag movement are not known. Here we show that disrupting the function of KIF4, a kinesin family member, slowed temporal progression of Gag through its trafficking intermediates and inhibited virus-like particle production. Knockdown of KIF4 also led to increased Gag degradation, resulting in reduced intracellular Gag protein levels; this phenotype was rescued by reintroduction of KIF4. When KIF4 function was blocked, Gag transiently accumulated in discrete, perinuclear, nonendocytic clusters that colocalized with endogenous KIF4, with Ubc9, an E2 SUMO-1 conjugating enzyme, and with SUMO. These studies identify a novel transit station through which Gag traffics en route to particle assembly and highlight the importance of KIF4 in regulating HIV-1 Gag trafficking and stability.


1999 ◽  
Vol 73 (8) ◽  
pp. 6937-6945 ◽  
Author(s):  
Eli Boritz ◽  
Jennifer Gerlach ◽  
J. Erik Johnson ◽  
John K. Rose

ABSTRACT We describe a replication-competent, recombinant vesicular stomatitis virus (VSV) in which the gene encoding the single transmembrane glycoprotein (G) was deleted and replaced by anenv-G hybrid gene encoding the extracellular and transmembrane domains of a human immunodeficiency virus type 1 (HIV-1) envelope protein fused to the cytoplasmic domain of VSV G. An additional gene encoding a green fluorescent protein was added to permit rapid detection of infection. This novel surrogate virus infected and propagated on cells expressing the HIV receptor CD4 and coreceptor CXCR4. Infection was blocked by SDF-1, the ligand for CXCR4, by antibody to CD4 and by HIV-neutralizing antibody. This virus, unlike VSV, entered cells by a pH-independent pathway and thus supports a pH-independent pathway of HIV entry. Additional recombinants carrying hybrid env-G genes derived from R5 or X4R5 HIV strains also showed the coreceptor specificities of the HIV strains from which they were derived. These surrogate viruses provide a simple and rapid assay for HIV-neutralizing antibodies as well as a rapid screen for molecules that would interfere with any stage of HIV binding or entry. The viruses might also be useful as HIV vaccines. Our results suggest wide applications of other surrogate viruses based on VSV.


2007 ◽  
Vol 81 (14) ◽  
pp. 7476-7490 ◽  
Author(s):  
Andrés Finzi ◽  
Alexandre Orthwein ◽  
Johanne Mercier ◽  
Éric A. Cohen

ABSTRACT Gag proteins are necessary and sufficient to direct human immunodeficiency virus type 1 (HIV-1) particle assembly and budding. Recent evidence suggests that Gag targeting to late endosomal/multivesicular body (LE/MVB) compartments occurs prior to viral particle budding at the plasma membrane (PM). However, the route that Gag follows before reaching its steady-state destinations still remains a subject of debate. Using a subcellular fractionation method that separates PM from LE/MVB combined with pulse-chase labeling, we analyzed Gag trafficking in HIV-1-producing HEK 293T cells. Our results reveal that the majority of newly synthesized Gag is primarily targeted to the PM. While PM-targeted Gag was efficiently released, a significant fraction of the remaining cell surface-associated Gag was found to be subsequently internalized to LE/MVB, where it accumulated, thus accounting for the majority of LE/MVB-associated Gag. Importantly, this accumulation of Gag in LE/MVB was found to be cholesterol dependent since it was sensitive to the sterol-binding drugs filipin and methyl-β-cyclodextrin. These results point towards the PM as being the primary site of productive HIV-1 assembly in cells that also support Gag accumulation in intracellular compartments.


2004 ◽  
Vol 78 (19) ◽  
pp. 10803-10813 ◽  
Author(s):  
Barbara Müller ◽  
Jessica Daecke ◽  
Oliver T. Fackler ◽  
Matthias T. Dittmar ◽  
Hanswalter Zentgraf ◽  
...  

ABSTRACT The introduction of a label which can be detected in living cells opens new possibilities for the direct analysis of dynamic processes in virus replication, such as the transport and assembly of structural proteins. Our aim was to generate a tool for the analysis of the trafficking of the main structural protein of human immunodeficiency virus type 1 (HIV-1), Gag, as well as for the analysis of virus-host cell interactions in an authentic setting. We describe here the construction and characterization of infectious HIV derivatives carrying a label within the Gag polyprotein. Based on our initial finding that a short epitope tag could be inserted near the C terminus of the matrix domain of Gag without affecting viral replication, we constructed HIV derivatives carrying the egfp gene at the analogous position, resulting in the expression of a Gag-EGFP fusion protein in the authentic viral context. Particles displaying normal viral protein compositions were released from transfected cells, and Gag-EGFP was efficiently processed by the viral protease, yielding the expected products. Furthermore, particles with mature morphology were observed by thin-section electron microscopy. The modified virus was even found to be infectious, albeit with reduced relative infectivity. By preparing mixed particles containing equimolar amounts of Gag-EGFP and Gag, we were able to obtain highly fluorescently labeled virion preparations which displayed normal morphology and full wild-type infectivity, demonstrating that the process of HIV particle assembly displays a remarkable flexibility. The fluorescent virus derivative is a useful tool for investigating the interaction of HIV with live cells.


2005 ◽  
Vol 79 (7) ◽  
pp. 4055-4065 ◽  
Author(s):  
Lynnie Rudner ◽  
Sascha Nydegger ◽  
Lori V. Coren ◽  
Kunio Nagashima ◽  
Markus Thali ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Gag is the primary structural protein of the virus and is sufficient for particle formation. We utilized the recently developed biarsenical-labeling method to dynamically observe HIV-1 Gag within live cells by adding a tetracysteine tag (C-C-P-G-C-C) to the C terminus of Gag in both Pr55Gag expression and full-length proviral constructs. Membrane-permeable biarsenical compounds FlAsH and ReAsH covalently bond to this tetracysteine sequence and specifically fluoresce, effectively labeling Gag in the cell. Biarsenical labeling readily and specifically detected a tetracysteine-tagged HIV-1 Gag protein (Gag-TC) in HeLa, Mel JuSo, and Jurkat T cells by deconvolution fluorescence microscopy. Gag-TC was localized primarily at or near the plasma membrane in all cell types examined. Fluorescent two-color analysis of Gag-TC in HeLa cells revealed that nascent Gag was present mostly at the plasma membrane in distinct regions. Intracellular imaging of a Gag-TC myristylation mutant observed a diffuse signal throughout the cell, consistent with the role of myristylation in Gag localization to the plasma membrane. In contrast, mutation of the L-domain core sequence did not appreciably alter the localization of Gag, suggesting that the PTAP L domain functions at the site of budding rather than as a targeting signal. Taken together, our results show that Gag concentrates in specific plasma membrane areas rapidly after translation and demonstrate the utility of biarsenical labeling for visualizing the dynamic localization of Gag.


2001 ◽  
Vol 45 (9) ◽  
pp. 2616-2622 ◽  
Author(s):  
Kristina Lindsten ◽  
Tat'ána Uhlı́ková ◽  
Jan Konvalinka ◽  
Maria G. Masucci ◽  
Nico P. Dantuma

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) protease is essential for production of infectious virus and is therefore a major target for the development of drugs against AIDS. Cellular proteins are also cleaved by the protease, which explains its cytotoxic activity and the consequent failure to establish convenient cell-based protease assays. We have exploited this toxicity to develop a new protease assay that relies on transient expression of an artificial protease precursor harboring the green fluorescent protein (GFP-PR). The precursor is activated in vivo by autocatalytic cleavage, resulting in rapid elimination of protease-expressing cells. Treatment with therapeutic doses of HIV-1 protease inhibitors results in a dose-dependent accumulation of the fluorescent precursor that can be easily detected and quantified by flow cytometric and fluorimetric assays. The precursor provides a convenient and noninfectious model for high-throughput screenings of substances that can interfere with the activity of the protease in living cells.


2000 ◽  
Vol 74 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Yuko Morikawa ◽  
David J. Hockley ◽  
Milan V. Nermut ◽  
Ian M. Jones

ABSTRACT Human immunodeficiency virus type 1 Gag protein is cotranslationally myristoylated at the N terminus and targeted to the plasma membrane, where virus particle assembly occurs. Particle assembly requires the ordered multimerization of Gag proteins, yet there is little direct evidence of intermediates of the reaction or of the domains that lead to each stage of the oligomerization process. In this study, following the expression in insect cells of C-terminally truncated Gag proteins and their purification, both the multimeric nature of each Gag protein and the ability to form Gag virus-like particles (VLP) were analyzed. Our results show that (i) the matrix (MA) domain forms a trimer and contributes to a similar level of oligomerization of the assembly-competent Gag; (ii) the p2 domain, located at the capsid/nucleocapsid junction, is essential for a higher order of multimerization (>1,000 kDa); (iii) the latter multimerization is accompanied by a change in Gag assembly morphology from tubes to spheres and results in VLP production; and (iv) N-terminal myristoylation is not required for either of the multimerization stages but plays a key role in conversion of these multimers to Gag VLP. We suggest that the Gag trimer and the >1,000-kDa multimer are intermediates in the assembly reaction and form before Gag targeting to the plasma membrane. Our data identify a minimum of three stages for VLP development and suggest that each stage involves a separate domain, MA, p2, or N-terminal myristoylation, each of which contributes to HIV particle assembly.


Sign in / Sign up

Export Citation Format

Share Document