scholarly journals HLA-B57/B*5801 Human Immunodeficiency Virus Type 1 Elite Controllers Select for Rare Gag Variants Associated with Reduced Viral Replication Capacity and Strong Cytotoxic T-Lymphotye Recognition

2008 ◽  
Vol 83 (6) ◽  
pp. 2743-2755 ◽  
Author(s):  
Toshiyuki Miura ◽  
Mark A. Brockman ◽  
Arne Schneidewind ◽  
Michael Lobritz ◽  
Florencia Pereyra ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) elite controllers (EC) maintain viremia below the limit of commercial assay detection (<50 RNA copies/ml) in the absence of antiviral therapy, but the mechanisms of control remain unclear. HLA-B57 and the closely related allele B*5801 are particularly associated with enhanced control and recognize the same Gag240-249 TW10 epitope. The typical escape mutation (T242N) within this epitope diminishes viral replication capacity in chronically infected persons; however, little is known about TW10 epitope sequences in residual replicating viruses in B57/B*5801 EC and the extent to which mutations within this epitope may influence steady-state viremia. Here we analyzed TW10 in a total of 50 B57/B*5801-positive subjects (23 EC and 27 viremic subjects). Autologous plasma viral sequences from both EC and viremic subjects frequently harbored the typical cytotoxic T-lymphocyte (CTL)-selected mutation T242N (15/23 sequences [65.2%] versus 23/27 sequences [85.1%], respectively; P = 0.18). However, other unique mutants were identified in HIV controllers, both within and flanking TW10, that were associated with an even greater reduction in viral replication capacity in vitro. In addition, strong CTL responses to many of these unique TW10 variants were detected by gamma interferon-specific enzyme-linked immunospot assay. These data suggest a dual mechanism for durable control of HIV replication, consisting of viral fitness loss resulting from CTL escape mutations together with strong CD8 T-cell immune responses to the arising variant epitopes.

2009 ◽  
Vol 83 (13) ◽  
pp. 6941-6946 ◽  
Author(s):  
Eric Nou ◽  
Yan Zhou ◽  
Damaris D. Nou ◽  
Joel N. Blankson

ABSTRACT Elite controllers or suppressors (ES) are human immunodeficiency virus type 1 (HIV-1)-infected patients who control viral replication to <50 copies/ml without antiretroviral therapy. Downregulation of HLA class I molecules is an important mechanism used by HIV-1 to evade the immune system. In this study, we showed that primary isolates from ES are as effective as isolates obtained from patients with progressive HIV-1 disease at downregulating HLA-A*2 and HLA-B*57 molecules on primary CD4+ T cells. Thus, a diminished ability of viral isolates from ES to evade HIV-specific immune responses probably does not contribute to the control of viral replication in these patients.


2008 ◽  
Vol 83 (1) ◽  
pp. 140-149 ◽  
Author(s):  
Toshiyuki Miura ◽  
Mark A. Brockman ◽  
Zabrina L. Brumme ◽  
Chanson J. Brumme ◽  
Florencia Pereyra ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-infected persons who maintain plasma viral loads of <50 copies RNA/ml without treatment have been termed elite controllers (EC). Factors contributing to durable control of HIV in EC are unknown, but an HLA-dependent mechanism is suggested by overrepresentation of “protective” class I alleles, such as B*27, B*51, and B*57. Here we investigated the relative replication capacity of viruses (VRC) obtained from EC (n = 54) compared to those from chronic progressors (CP; n = 41) by constructing chimeric viruses using patient-derived gag-protease sequences amplified from plasma HIV RNA and inserted into an NL4-3 backbone. The chimeric viruses generated from EC displayed lower VRC than did viruses from CP (P < 0.0001). HLA-B*57 was associated with lower VRC (P = 0.0002) than were other alleles in both EC and CP groups. Chimeric viruses from B*57+ EC (n = 18) demonstrated lower VRC than did viruses from B*57+ CP (n = 8, P = 0.0245). Differences in VRC between EC and CP were also observed for viruses obtained from individuals expressing no described “protective” alleles (P = 0.0065). Intriguingly, two common HLA alleles, A*02 and B*07, were associated with higher VRC (P = 0.0140 and 0.0097, respectively), and there was no difference in VRC between EC and CP sharing these common HLA alleles. These findings indicate that cytotoxic T-lymphocyte (CTL) selection pressure on gag-protease alters VRC, and HIV-specific CTLs inducing escape mutations with fitness costs in this region may be important for strict viremia control in EC of HIV.


2008 ◽  
Vol 82 (15) ◽  
pp. 7395-7410 ◽  
Author(s):  
Justin R. Bailey ◽  
Karen O'Connell ◽  
Hung-Chih Yang ◽  
Yefei Han ◽  
Jie Xu ◽  
...  

ABSTRACT Elite suppressors (ES) are untreated human immunodeficiency virus type 1 (HIV-1)-infected patients who maintain viral loads of <50 copies/ml. The mechanisms involved in this control of viral replication remain unclear. Prior studies suggested that these patients, as well as long-term nonprogressors, are infected with defective HIV-1 variants. Other reports have shown that the HLA-B*27 and -B*57 alleles are overrepresented in these patients, suggesting that host factors play a role in the control of viral replication. In order to distinguish between these hypotheses, we studied differences in viral isolates and immune responses of an HIV-1 transmission pair. While both patients are HLA-B*57 positive, the transmitter progressed to AIDS, whereas the recipient, who is also HLA-B*27 positive, is an ES. Isolates from both patients were replication competent and contained the T242N escape mutation in Gag, which is known to decrease viral fitness. While the acquisition of compensatory mutations occurred in isolates from the progressor, a superior HIV-specific CD8+ T-cell response in the ES appears to have prevented viral replication and thus the evolution toward a more fit variant. In addition, CD8+ T cells in the ES have selected for a rare mutation in an immunodominant HLA-B*27-restricted Gag epitope, which also has a negative impact on fitness. The results strongly suggest that through direct and indirect mechanisms, CD8+ T cells in some ES control HIV-1 isolates are capable of causing profound immunosuppression.


2009 ◽  
Vol 83 (8) ◽  
pp. 3826-3833 ◽  
Author(s):  
Zandrea Ambrose ◽  
Brian D. Herman ◽  
Chih-Wei Sheen ◽  
Shannon Zelina ◽  
Katie L. Moore ◽  
...  

ABSTRACT We previously identified a rare mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), I132M, which confers high-level resistance to the nonnucleoside RT inhibitors (NNRTIs) nevirapine and delavirdine. In this study, we have further characterized the role of this mutation in viral replication capacity and in resistance to other RT inhibitors. Surprisingly, our data show that I132M confers marked hypersusceptibility to the nucleoside analogs lamivudine (3TC) and tenofovir at both the virus and enzyme levels. Subunit-selective mutagenesis studies revealed that the mutation in the p51 subunit of RT was responsible for the increased sensitivity to the drugs, and transient kinetic analyses showed that this hypersusceptibility was due to I132M decreasing the enzyme's affinity for the natural dCTP substrate but increasing its affinity for 3TC-triphosphate. Furthermore, the replication capacity of HIV-1 containing I132M is severely impaired. This decrease in viral replication capacity could be partially or completely compensated for by the A62V or L214I mutation, respectively. Taken together, these results help to explain the infrequent selection of I132M in patients for whom NNRTI regimens are failing and furthermore demonstrate that a single mutation outside of the polymerase active site and inside of the p51 subunit of RT can significantly influence nucleotide selectivity.


2002 ◽  
Vol 76 (17) ◽  
pp. 8659-8666 ◽  
Author(s):  
Wolfgang Resch ◽  
Rainer Ziermann ◽  
Neil Parkin ◽  
Andrea Gamarnik ◽  
Ronald Swanstrom

ABSTRACT The evolution of human immunodeficiency virus type 1 (HIV-1) strains with reduced susceptibility to protease inhibitors (PIs) is a major cause of PI treatment failure. A subset of subjects failing a therapy regimen containing the PI nelfinavir developed mutations at position 88 in the protease region. The N88S mutation occurring in some of these subjects induces amprenavir hypersusceptibility and a reduction of fitness and replication capacity. Here we demonstrate that substitutions L63P and V77I in protease, in combination, partially compensate for the loss of fitness, loss of replication capacity, loss of specific infectivity, and aberrant Gag processing induced by the N88S mutation. In addition, these mutations partially ablate amprenavir hypersusceptibility. Addition of mutation M46L to a strain harboring mutations L63P, V77I, and N88S resulted in a reduction of fitness and infectivity without changing Gag-processing efficiency, while amprenavir hypersusceptibility was further diminished. The ratio of reverse transcriptase activity to p24 protein was reduced in this strain compared to that in the other variants, suggesting that the M46L effect on fitness occurred through a mechanism different from a Gag-processing defect. We utilized these mutant strains to undertake a systematic comparison of indirect, single, cycle-based measures of fitness with direct, replication-based fitness assays and demonstrated that both yield consistent results. However, we observed that the magnitude of the fitness loss for one of the mutants varied depending on the assay used.


2006 ◽  
Vol 81 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Marie Lambelé ◽  
Béatrice Labrosse ◽  
Emmanuelle Roch ◽  
Alain Moreau ◽  
Bernard Verrier ◽  
...  

ABSTRACT The motifs involved in the various functions of the human immunodeficiency virus type 1 (HIV-1) gp41 cytoplasmic tail (CT), particularly those related to the intracellular trafficking and assembly of envelope glycoproteins (Env) onto core particles, have generally been assessed with a restricted panel of T-cell laboratory-adapted virus strains. Here, we investigated gp41 CT sequences derived from individuals infected with HIV-1 viruses of various subtypes. We identified four patients harboring HIV variants with a natural polymorphism in the membrane-proximal tyrosine-based signal Y712SPL or the Y802W803 diaromatic motif, which are two major determinants of Env intracellular trafficking. Confocal microscopy showed that the intracellular distribution of Env with a mutation in the tyrosine or diaromatic motif differed from that of Env with no mutation in these motifs. Surprisingly, the gp41 CTs of the primary viruses also had differential effects on the intracellular distribution of Env, independently of mutations in the tyrosine or diaromatic motifs, suggesting the involvement of additional determinants. Furthermore, analyses of virus replication kinetics indicated that the effects of mutations in the tyrosine or diaromatic motifs on viral replication depended on the gp41 CT context. These effects were at least partly due to differences in the efficiency of Env incorporation into virions. Thus, polymorphisms in primary HIV-1 gp41 CTs at the quasispecies or subtype level can influence the intracellular distribution of Env, its incorporation into virions, and viral replication capacity.


Sign in / Sign up

Export Citation Format

Share Document