scholarly journals Uniform Nomenclature for Monoclonal Antibodies Directed Against Virus-Coded Proteins of Simian Virus 40 and Polyoma Virus

1982 ◽  
Vol 41 (2) ◽  
pp. 709-709 ◽  
Author(s):  
Lionel Crawford ◽  
Ed Harlow
1981 ◽  
Vol 39 (3) ◽  
pp. 861-869 ◽  
Author(s):  
E Harlow ◽  
L V Crawford ◽  
D C Pim ◽  
N M Williamson

1973 ◽  
Vol 11 (6) ◽  
pp. 1027-1029
Author(s):  
Robert E. Gallagher ◽  
Arthur S. Levine ◽  
David H. Gillespie ◽  
Robert C. Gallo

1984 ◽  
Vol 4 (2) ◽  
pp. 232-239
Author(s):  
F Van Roy ◽  
L Fransen ◽  
W Fiers

Immune complex kinase assays in the simian virus 40 system were performed by incubation of immunoprecipitates containing tumor antigens with [gamma-32P]ATP, followed by analysis of any phosphoacceptor proteins. These assays yielded mainly the viral large T-antigen and, in particular, the associated cellular p53 as endogenous substrates. The nature of these substrates was confirmed by proteolysis techniques. Under specific conditions, casein could be used as an exogenous substrate as well. The kinase reactions showed preference for ATP and MgCl2 instead of GTP or MnCl2. Both phosphoserine and phosphothreonine, but in no case phosphotyrosine, were detected after an immune complex kinase reaction. Apparently, several in vivo phosphorylation sites were recognized in vitro in both large T-antigen and p53, but the presence of some artifactual sites could not be completely excluded. Although contaminating kinases were detectable in the immune complexes, at least the p53 molecules were phosphorylated in vitro in a more specific way. This followed from several characteristics of the immune complex kinase reactions and especially from the strong inhibition of p53 phosphorylation by two anti-large-T monoclonal antibodies. It was shown that large T-antigen showed associated kinase activity, although none of our results could unambiguously demonstrate an intrinsic kinase activity of this protein. Finally, anti-p53 monoclonal antibodies only slightly affected in vitro phosphorylation reactions, whereas a p53 molecule from a simian virus 40-free, chemically transformed human cell line was not phosphorylated in vitro under any condition tested. Thus, it is highly unlikely that the p53 molecule per se carries intrinsic or even associated kinase activities.


1974 ◽  
Vol 52 (5) ◽  
pp. 1469-1476 ◽  
Author(s):  
Aaron E. Freeman ◽  
Gary J. Kelloff ◽  
Mina Lee Vernon ◽  
William T. Lane ◽  
Worth I. Capps ◽  
...  

Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 464-474 ◽  
Author(s):  
JW Singer ◽  
P Charbord ◽  
A Keating ◽  
J Nemunaitis ◽  
G Raugi ◽  
...  

Abstract Adherent cells from long-term marrow cultures from 23 individuals were transformed with wild-type simian virus 40 (SV40). After transformation, cloned cell lines were developed that even after rigorous subcloning invariably produced both stromal cells and round cells. The stromal cells expressed cytoskeletal filaments similar to those of long-term marrow culture adherent cells and produced interstitial and basal lamina collagen types. The round cells had the electron microscopic appearance of primitive hematopoietic cells and when examined with cytochemical stains and monoclonal antibodies to hematopoietic differentiation antigens had reaction patterns suggestive of cells from several lineages. Most round cells expressed the pan- hematopoietic T-200 determinant, and lesser percentages expressed the early T cell antigens CD-1 and CD-3, HLA-DR determinants, the monocytic antigen recognized by Leu M3, and the myeloid antigens detected by monoclonal antibodies 1G10 and 12.8. In addition, when plated in semisolid medium in the presence of a source of colony-stimulating activity, up to 11% of the cells formed colonies consisting of blastlike cells that also expressed hematopoietic cell surface determinants. The data suggest that adherent cells in long-term marrow cultures contain a cell that after transformation by SV40 obligately produces cells with hematopoietic as well as stromalike features.


1984 ◽  
Vol 4 (2) ◽  
pp. 232-239 ◽  
Author(s):  
F Van Roy ◽  
L Fransen ◽  
W Fiers

Immune complex kinase assays in the simian virus 40 system were performed by incubation of immunoprecipitates containing tumor antigens with [gamma-32P]ATP, followed by analysis of any phosphoacceptor proteins. These assays yielded mainly the viral large T-antigen and, in particular, the associated cellular p53 as endogenous substrates. The nature of these substrates was confirmed by proteolysis techniques. Under specific conditions, casein could be used as an exogenous substrate as well. The kinase reactions showed preference for ATP and MgCl2 instead of GTP or MnCl2. Both phosphoserine and phosphothreonine, but in no case phosphotyrosine, were detected after an immune complex kinase reaction. Apparently, several in vivo phosphorylation sites were recognized in vitro in both large T-antigen and p53, but the presence of some artifactual sites could not be completely excluded. Although contaminating kinases were detectable in the immune complexes, at least the p53 molecules were phosphorylated in vitro in a more specific way. This followed from several characteristics of the immune complex kinase reactions and especially from the strong inhibition of p53 phosphorylation by two anti-large-T monoclonal antibodies. It was shown that large T-antigen showed associated kinase activity, although none of our results could unambiguously demonstrate an intrinsic kinase activity of this protein. Finally, anti-p53 monoclonal antibodies only slightly affected in vitro phosphorylation reactions, whereas a p53 molecule from a simian virus 40-free, chemically transformed human cell line was not phosphorylated in vitro under any condition tested. Thus, it is highly unlikely that the p53 molecule per se carries intrinsic or even associated kinase activities.


Sign in / Sign up

Export Citation Format

Share Document