scholarly journals Simian virus 40-transformed adherent cells from human long-term marrow cultures: cloned cell lines produce cells with stromal and hematopoietic characteristics

Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 464-474 ◽  
Author(s):  
JW Singer ◽  
P Charbord ◽  
A Keating ◽  
J Nemunaitis ◽  
G Raugi ◽  
...  

Abstract Adherent cells from long-term marrow cultures from 23 individuals were transformed with wild-type simian virus 40 (SV40). After transformation, cloned cell lines were developed that even after rigorous subcloning invariably produced both stromal cells and round cells. The stromal cells expressed cytoskeletal filaments similar to those of long-term marrow culture adherent cells and produced interstitial and basal lamina collagen types. The round cells had the electron microscopic appearance of primitive hematopoietic cells and when examined with cytochemical stains and monoclonal antibodies to hematopoietic differentiation antigens had reaction patterns suggestive of cells from several lineages. Most round cells expressed the pan- hematopoietic T-200 determinant, and lesser percentages expressed the early T cell antigens CD-1 and CD-3, HLA-DR determinants, the monocytic antigen recognized by Leu M3, and the myeloid antigens detected by monoclonal antibodies 1G10 and 12.8. In addition, when plated in semisolid medium in the presence of a source of colony-stimulating activity, up to 11% of the cells formed colonies consisting of blastlike cells that also expressed hematopoietic cell surface determinants. The data suggest that adherent cells in long-term marrow cultures contain a cell that after transformation by SV40 obligately produces cells with hematopoietic as well as stromalike features.

Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 464-474
Author(s):  
JW Singer ◽  
P Charbord ◽  
A Keating ◽  
J Nemunaitis ◽  
G Raugi ◽  
...  

Adherent cells from long-term marrow cultures from 23 individuals were transformed with wild-type simian virus 40 (SV40). After transformation, cloned cell lines were developed that even after rigorous subcloning invariably produced both stromal cells and round cells. The stromal cells expressed cytoskeletal filaments similar to those of long-term marrow culture adherent cells and produced interstitial and basal lamina collagen types. The round cells had the electron microscopic appearance of primitive hematopoietic cells and when examined with cytochemical stains and monoclonal antibodies to hematopoietic differentiation antigens had reaction patterns suggestive of cells from several lineages. Most round cells expressed the pan- hematopoietic T-200 determinant, and lesser percentages expressed the early T cell antigens CD-1 and CD-3, HLA-DR determinants, the monocytic antigen recognized by Leu M3, and the myeloid antigens detected by monoclonal antibodies 1G10 and 12.8. In addition, when plated in semisolid medium in the presence of a source of colony-stimulating activity, up to 11% of the cells formed colonies consisting of blastlike cells that also expressed hematopoietic cell surface determinants. The data suggest that adherent cells in long-term marrow cultures contain a cell that after transformation by SV40 obligately produces cells with hematopoietic as well as stromalike features.


1989 ◽  
Vol 9 (6) ◽  
pp. 2748-2751
Author(s):  
D F Andrews ◽  
J Nemunaitis ◽  
C Tompkins ◽  
J W Singer

When exposed to 5-azacytidine, marrow stromal cells from active long-term marrow cultures and cell lines derived from simian virus 40-transformed stromal cells rapidly upregulated c-abl and interleukin-6 transcripts while downregulating the expression of collagen I, a major matrix protein. Similar effects occurred with interleukin-1 alpha and tumor necrosis factor alpha, although the time course was considerably prolonged.


Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2269-2277 ◽  
Author(s):  
HM Lokhorst ◽  
T Lamme ◽  
M de Smet ◽  
S Klein ◽  
RA de Weger ◽  
...  

Abstract Long-term bone marrow cultures (LTBMC) from patients with multiple myeloma (MM) and normal donors were analyzed for immunophenotype and cytokine production. Both LTBMC adherent cells from myeloma and normal donor origin expressed CD10, CD13, the adhesion molecules CD44, CD54, vascular cell adhesion molecule 1, very late antigen 2 (VLA-2), and VLA- 5, and were positive for extracellular matrix components fibronectin, laminin, and collagen types 3 and 4. LTBMC from myeloma patients and normal donors spontaneously secreted interleukin-6 (IL-6). However, levels of IL-6 correlated with the stage of disease; highest levels of IL-6 were found in LTBMC from patients with active myeloma. To identify the origin of IL-6 production, LTBMC from MM patients and normal donors were cocultured with BM-derived myeloma cells and cells from myeloma cell lines. IL-6 was induced by plasma cell lines that adhered to LTBMC such as ARH-77 and RPMI-8226, but not by nonadhering cell lines U266 and FRAVEL. Myeloma cells strongly stimulated IL-6 secretion in cocultures with LTBMC adherent cells from normal donors and myeloma patients. When direct cellular contact between LTBMC and plasma cells was prevented by tissue-culture inserts, no IL-6 production was induced. This implies that intimate cell-cell contact is a prerequisite for IL-6 induction. Binding of purified myeloma cells to LTBMC adherent cells was partly inhibited by monoclonal antibodies against adhesion molecules VLA-4, CD44, and lymphocyte function-associated antigen 1 (LFA-1) present on the plasma cell. Antibodies against VLA-4, CD29, and LFA-1 also inhibited the induced IL-6 secretion in plasma cell-LTBMC cocultures. In situ hybridization studies performed before and after coculture with plasma cells indicated that LTBMC adherent cells produce the IL-6. These results suggest that the high levels of IL-6 found in LTBMC of MM patients with active disease are a reflection of their previous contact with tumor cells in vivo. These results provide a new perspective on tumor growth in MM and emphasize the importance of plasma cell-LTBMC interaction in the pathophysiology of MM.


Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2269-2277 ◽  
Author(s):  
HM Lokhorst ◽  
T Lamme ◽  
M de Smet ◽  
S Klein ◽  
RA de Weger ◽  
...  

Long-term bone marrow cultures (LTBMC) from patients with multiple myeloma (MM) and normal donors were analyzed for immunophenotype and cytokine production. Both LTBMC adherent cells from myeloma and normal donor origin expressed CD10, CD13, the adhesion molecules CD44, CD54, vascular cell adhesion molecule 1, very late antigen 2 (VLA-2), and VLA- 5, and were positive for extracellular matrix components fibronectin, laminin, and collagen types 3 and 4. LTBMC from myeloma patients and normal donors spontaneously secreted interleukin-6 (IL-6). However, levels of IL-6 correlated with the stage of disease; highest levels of IL-6 were found in LTBMC from patients with active myeloma. To identify the origin of IL-6 production, LTBMC from MM patients and normal donors were cocultured with BM-derived myeloma cells and cells from myeloma cell lines. IL-6 was induced by plasma cell lines that adhered to LTBMC such as ARH-77 and RPMI-8226, but not by nonadhering cell lines U266 and FRAVEL. Myeloma cells strongly stimulated IL-6 secretion in cocultures with LTBMC adherent cells from normal donors and myeloma patients. When direct cellular contact between LTBMC and plasma cells was prevented by tissue-culture inserts, no IL-6 production was induced. This implies that intimate cell-cell contact is a prerequisite for IL-6 induction. Binding of purified myeloma cells to LTBMC adherent cells was partly inhibited by monoclonal antibodies against adhesion molecules VLA-4, CD44, and lymphocyte function-associated antigen 1 (LFA-1) present on the plasma cell. Antibodies against VLA-4, CD29, and LFA-1 also inhibited the induced IL-6 secretion in plasma cell-LTBMC cocultures. In situ hybridization studies performed before and after coculture with plasma cells indicated that LTBMC adherent cells produce the IL-6. These results suggest that the high levels of IL-6 found in LTBMC of MM patients with active disease are a reflection of their previous contact with tumor cells in vivo. These results provide a new perspective on tumor growth in MM and emphasize the importance of plasma cell-LTBMC interaction in the pathophysiology of MM.


1988 ◽  
Vol 8 (9) ◽  
pp. 3864-3871
Author(s):  
D A Williams ◽  
M F Rosenblatt ◽  
D R Beier ◽  
R D Cone

The bone marrow is a complex microenvironment made up of multiple cell types which appears to play an important role in the maintenance of hematopoietic stem cell self-renewal and proliferation. We used murine long-term marrow cultures and a defective recombinant retrovirus vector containing the simian virus 40 large T antigen to immortalize marrow stromal cells which can support hematopoiesis in vitro for up to 5 weeks. Such cloned cell lines differentially supported stem cells which, when transplanted, allowed survival of lethally irradiated mice, formed hematopoietic spleen colonies in vivo, and stimulated lymphocyte proliferation in vitro. Molecular and functional analyses of these cell lines did not demonstrate the production of any growth factors known to support the proliferation of primitive hematopoietic stem cells. All cell lines examined produced macrophage colony-stimulating factor. The use of immortalizing retrovirus vectors may allow determination of unique cellular proteins important in hematopoietic stem cell proliferation by the systematic comparison of stromal cells derived from a variety of murine tissues.


1989 ◽  
Vol 9 (6) ◽  
pp. 2748-2751 ◽  
Author(s):  
D F Andrews ◽  
J Nemunaitis ◽  
C Tompkins ◽  
J W Singer

When exposed to 5-azacytidine, marrow stromal cells from active long-term marrow cultures and cell lines derived from simian virus 40-transformed stromal cells rapidly upregulated c-abl and interleukin-6 transcripts while downregulating the expression of collagen I, a major matrix protein. Similar effects occurred with interleukin-1 alpha and tumor necrosis factor alpha, although the time course was considerably prolonged.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4799-4799
Author(s):  
Zean Chen ◽  
Darcy Franicola ◽  
Donna Shields ◽  
Michael W. Epperly ◽  
Xichen Zhang ◽  
...  

Abstract Increased sensitivity to inhibition of hematopoiesis by TGF-β has been hypothesized to be a mechanism of hematopoietic failure in Fanconi Anemia (FA). To determine whether abrogation of TGF-β signaling rescued biologic parameters of hematopoiesis, we derived a novel DKO mouse strain (SMAD3-/- (129/Sv) Fancd2-/- (C57BL/6)) by breeding double heterozygote mice. The DKO mice were small at birth, but achieved normalized growth and development by six - eight weeks. Hematopoiesis in long-term bone marrow cultures derived from DKO mice, ceased generating day 14 CFU-GEMM hematopoietic progenitors by 18 weeks, similar to that observed with Fancd2-/- marrow cultures. In contrast, cultures from SMAD3-/- (129/Sv) demonstrated continuous hematopoiesis for over 30 weeks confirming results with marrow from SMAD3-/- (C57BL/6J) mice (Epperly, et al., Experimental Hematology, 33:353-362, 2005), and significantly longer than that in control 129/Sv X C57BL/6J F1 mouse long-term marrow cultures. Bone marrow stromal cell lines derived from long-term marrow cultures were tested for the diagnostic criterion of FA, increased sensitivity to DNA cross-linking agent, Mitomycin-C. Cells were incubated in Mitomycin-C at concentrations ranging from 0-20 ng/ml for four days and then plated in 4 well tissue culture plates, incubated for 7 days at 37o C in a CO2 incubator, stained with crystal violet, and colonies of greater than 50 cells counted. Similar to Fancd2-/- marrow stromal cells, DKO marrow stromal cells showed increased sensitivity to Mito-C, while marrow stromal cell lines from wild type or SMAD3-/- mouse marrow cultures were relatively resistant (p = 0.0086 comparing Fancd2-/- to control 129/Sv X C57BL/6J F1 cells, p = 0.0156 comparing DKO with control 129/Sv X C57BL/6J F1 cells, and p = 0.4676 comparing Smad3-/- cells to control 129/Sv X C57BL/6J F1 cells). Fresh bone marrow from DKO mice, similar to that from SMAD3-/- mice, demonstrated resistance to inhibition of hematopoietic cell colonies in vitro by increasing concentrations of TGF-β. Therefore, abrogation of TGF-β signaling in DKO cells did not alter the sensitivity of Fancd2-/- marrow stromal cells to Mitomycin-C. Supported by research grant NIAID/NIH, U19A168021. Disclosures No relevant conflicts of interest to declare.


1981 ◽  
Vol 1 (11) ◽  
pp. 994-1006 ◽  
Author(s):  
S Chen ◽  
M Verderame ◽  
A Lo ◽  
R Pollack

Normal fibroblasts display two distinct growth controls which can be assayed as requirements for serum or for anchorage. Interaction of mouse 3T3 fibroblasts with simian virus 40 (SV40) thus generates four classes of transformed cells. We have examined viral gene expression in these four classes of cell lines. Immunoprecipitation of [35S]methionine-labeled cell extracts with an antiserum obtained from tumor-bearing hamsters detected the SV40 large T and small t proteins (94,000 molecular weight [94K], 17K) and the nonviral host 54K protein in all cell lines tested. A tumor antigen with an apparent molecular weight of 100,000 was also found in some, but not all, lines. Similar "super T" molecules have been found by others in many rodent transformed lines. We carried out an analysis of the relation of phenotype to relative amounts of these proteins in cell lines of the four classes, using the Spearman rank correlation test. The amount of the 100K T antigen relative to the 94K T antigen or to total viral protein was well correlated with the ability to form colonies in semisolid medium. No significant correlation was found between quantities of labeled 94K T antigen, 54K host antigen, or 17K t antigen and either serum or anchorage independence. Mouse cells transformed with the small t SV40 deletion mutant 884 synthesized a 100K T antigen, suggesting that small t is not required for the production of this protein. The 100K T antigen migrated more slowly than lytic T. Since mixtures of extracts from cells expressing and lacking the 100K T antigen yielded the expected amount of this protein, it is unlikely that the 100K T derives from the 94K protein by a posttranslational modification.


1988 ◽  
Vol 8 (9) ◽  
pp. 3864-3871 ◽  
Author(s):  
D A Williams ◽  
M F Rosenblatt ◽  
D R Beier ◽  
R D Cone

The bone marrow is a complex microenvironment made up of multiple cell types which appears to play an important role in the maintenance of hematopoietic stem cell self-renewal and proliferation. We used murine long-term marrow cultures and a defective recombinant retrovirus vector containing the simian virus 40 large T antigen to immortalize marrow stromal cells which can support hematopoiesis in vitro for up to 5 weeks. Such cloned cell lines differentially supported stem cells which, when transplanted, allowed survival of lethally irradiated mice, formed hematopoietic spleen colonies in vivo, and stimulated lymphocyte proliferation in vitro. Molecular and functional analyses of these cell lines did not demonstrate the production of any growth factors known to support the proliferation of primitive hematopoietic stem cells. All cell lines examined produced macrophage colony-stimulating factor. The use of immortalizing retrovirus vectors may allow determination of unique cellular proteins important in hematopoietic stem cell proliferation by the systematic comparison of stromal cells derived from a variety of murine tissues.


1981 ◽  
Vol 1 (11) ◽  
pp. 994-1006
Author(s):  
S Chen ◽  
M Verderame ◽  
A Lo ◽  
R Pollack

Normal fibroblasts display two distinct growth controls which can be assayed as requirements for serum or for anchorage. Interaction of mouse 3T3 fibroblasts with simian virus 40 (SV40) thus generates four classes of transformed cells. We have examined viral gene expression in these four classes of cell lines. Immunoprecipitation of [35S]methionine-labeled cell extracts with an antiserum obtained from tumor-bearing hamsters detected the SV40 large T and small t proteins (94,000 molecular weight [94K], 17K) and the nonviral host 54K protein in all cell lines tested. A tumor antigen with an apparent molecular weight of 100,000 was also found in some, but not all, lines. Similar "super T" molecules have been found by others in many rodent transformed lines. We carried out an analysis of the relation of phenotype to relative amounts of these proteins in cell lines of the four classes, using the Spearman rank correlation test. The amount of the 100K T antigen relative to the 94K T antigen or to total viral protein was well correlated with the ability to form colonies in semisolid medium. No significant correlation was found between quantities of labeled 94K T antigen, 54K host antigen, or 17K t antigen and either serum or anchorage independence. Mouse cells transformed with the small t SV40 deletion mutant 884 synthesized a 100K T antigen, suggesting that small t is not required for the production of this protein. The 100K T antigen migrated more slowly than lytic T. Since mixtures of extracts from cells expressing and lacking the 100K T antigen yielded the expected amount of this protein, it is unlikely that the 100K T derives from the 94K protein by a posttranslational modification.


Sign in / Sign up

Export Citation Format

Share Document