scholarly journals Localization of Epstein-Barr virus envelope glycoproteins on the inner nuclear membrane of virus-producing cells.

1989 ◽  
Vol 63 (2) ◽  
pp. 828-832 ◽  
Author(s):  
M R Torrisi ◽  
M Cirone ◽  
A Pavan ◽  
C Zompetta ◽  
G Barile ◽  
...  
2006 ◽  
Vol 80 (19) ◽  
pp. 9628-9633 ◽  
Author(s):  
Susan M. Turk ◽  
Ru Jiang ◽  
Liudmila S. Chesnokova ◽  
Lindsey M. Hutt-Fletcher

ABSTRACT Epstein-Barr virus (EBV) is a persistent, orally transmitted herpesvirus that replicates in B cells and epithelial cells and is associated with lymphoid and epithelial malignancies. The virus binds to CD21 on B cells via glycoprotein gp350/220 and infects efficiently. Infection of cultured epithelial cells has not typically been efficient but can occur in the absence of gp350/220 and CD21 and in vivo is thought to be important to the development of nasopharyngeal carcinoma. We report here that antibodies to gp350/220, which inhibit EBV infection of B cells, enhance infection of epithelial cells. The effect is not mediated by Fc receptor binding but is further enhanced by antibody cross-linking, which may patch gp350/220 in the virus envelope. Saliva from EBV-seropositive individuals has similar effects that can be reversed by depletion of antibody. The results are consistent with a model in which gp350/220 interferes with the access of other important players to the epithelial cell surface. The results may have implications for the development of nasopharyngeal carcinoma in high-risk populations in which elevated titers of antibody to EBV lytic cycle proteins are prognostic.


2020 ◽  
Author(s):  
Meili Li ◽  
Yingjie Guo ◽  
Yangxi Deng ◽  
Yiwen Li ◽  
Xiaowen Ou ◽  
...  

Abstract Background: Epstein-Barr virus (EBV), the pathogen of several human malignancies, encodes many proteins that require to be transported into the nucleus for viral DNA reproduction and nucleocapsids assembly in the lytic replication cycle. A nuclear membrane phosphoprotein encoded by EBV BLLF2, is believed to associate with viral DNA packaging and primary egress across the nuclear membrane. Results: Here, fluorescence microscope, mutation analysis, interspecies heterokaryon assays, co-immunoprecipitation assays and western blot were performed to explore the nuclear import mechanism of BLLF2. As results, BLLF2 was shown to be a nucleocytoplasmic shuttling protein, which was mediated neither by chromosomal region maintenance 1 (CRM1)- nor transporter associated with antigen processing (TAP)-dependent pathway. Yet, two functional nuclear localization signals (NLSs) of BLLF2, NLS1 (16KRQALETVPHPQNRGR31) and NLS2 (48PPVAKRRR58), were identified, whereas the predicted NES was nonfunctional. Finally, BLLF2 was proved to transport into the nucleus via Ran-dependent and importin β1-dependent pathway. Conclusions: This mechanism may contribute to a more extensive insight of the assembly and synthesis of EB virions in the nucleus, thus affording a new direction for the treatment of viruses.


2008 ◽  
Vol 45 (16) ◽  
pp. 4119-4120
Author(s):  
Kendra Young ◽  
Andrew Herbert ◽  
Liudmila Kulik ◽  
Paul Barlow ◽  
Michael Holers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document