scholarly journals The promoter, transcriptional unit, and coding sequence of herpes simplex virus 1 family 35 proteins are contained within and in frame with the UL26 open reading frame.

1991 ◽  
Vol 65 (1) ◽  
pp. 206-212 ◽  
Author(s):  
F Y Liu ◽  
B Roizman
1998 ◽  
Vol 72 (7) ◽  
pp. 6056-6064 ◽  
Author(s):  
Yijan E. Chang ◽  
Laura Menotti ◽  
Felix Filatov ◽  
Gabriella Campadelli-Fiume ◽  
Bernard Roizman

ABSTRACT An antibody made against the herpes simplex virus 1 US5 gene predicted to encode glycoprotein J was found to react strongly with two proteins, one with an apparent M r of 23,000 and mapping in the S component and one with a herpes simplex virus protein with an apparent M r of 43,000. The antibody also reacted with herpes simplex virus type 2 proteins forming several bands with apparent M rs ranging from 43,000 to 50,000. Mapping studies based on intertypic recombinants, analyses of deletion mutants, and ultimately, reaction of the antibody with a chimeric protein expressed by in-frame fusion of the glutathione S-transferase gene to an open reading frame antisense to the gene encoding glycoprotein B led to the definitive identification of the new open reading frame, designated UL27.5. Sequence analyses indicate the conservation of a short amino acid sequence common to US5 and UL27.5. The coding sequence of the herpes simplex virus UL27.5 open reading frame is strongly homologous to the sequence encoding the carboxyl terminus of the herpes simplex virus 2 UL27.5 sequence. However, both open reading frames could encode proteins predicted to be significantly larger than the mature UL27.5 proteins accumulating in the infected cells, indicating that these are either processed posttranslationally or synthesized from alternate, nonmethionine-initiating codons. The UL27.5 gene expression is blocked by phosphonoacetate, indicating that it is a γ2 gene. The product accumulated predominantly in the cytoplasm. UL27.5 is the third open reading frame found to map totally antisense to another gene and suggests that additional genes mapping antisense to known genes may exist.


Virology ◽  
2000 ◽  
Vol 266 (2) ◽  
pp. 275-285 ◽  
Author(s):  
Patricia L. Ward ◽  
Brunella Taddeo ◽  
Nancy S. Markovitz ◽  
Bernard Roizman

2005 ◽  
Vol 79 (13) ◽  
pp. 8470-8479 ◽  
Author(s):  
Alice P. W. Poon ◽  
Bernard Roizman

ABSTRACT The US3 open reading frame of herpes simplex virus 1 (HSV-1) was reported to encode two mRNAs each directing the synthesis of the same protein. We report that the US3 gene encodes two proteins. The predominant US3 protein is made in wild-type HSV-1-infected cells. The truncated mRNA and a truncated protein designated US3.5 and initiating from methionine 77 were preeminent in cells infected with a mutant lacking the gene encoding ICP22. Both the wild-type and truncated proteins also accumulated in cells transduced with a baculovirus carrying the entire US3 open reading frame. The US3.5 protein accumulating in cells infected with the mutant lacking the gene encoding ICP22 mediated the phosphorylation of histone deacetylase 1, a function of US3 protein, but failed to block apoptosis of the infected cells. The US3.5 and US3 proteins differ with respect to the range of functions they exhibit.


Sign in / Sign up

Export Citation Format

Share Document